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Abstract

Dynamic bifurcation and flow instabilities of cylindrical bars, made of an incompressible strain hardening plastic

material, are investigated. A Lagrangian linear perturbation analysis is performed to obtain a fourth order partial

differential equation which governs the evolution of the perturbation. The analysis shows that inertia slows down the

growth of long wavelengths while bidimensional effects conjugated to strain hardening extinct short wavelengths. The

present approach is applied successfully to the analysis of bifurcation and instabilities in (i) a rectangular block during

plane strain extension, (ii) a circular bar during uniaxial extension. New results are obtained in the case of rate inde-

pendent materials and a synthetical point of view is obtained for rate dependent behaviors.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In rapid stretching, structures can develop a multiple necking pattern which leads to the fracture in

several fragments. Experimental evidence of this phenomenon has been reported by several authors.

Niordson (1965) has developed an experimental device in which an intense electromagnetic field is used to

expand thin rings at high strain rate. In the loaded specimen, many necks are observed along the cir-

cumference. Grady and Benson (1983) performed dynamic expansion of aluminium and copper rings using

the former technique. The authors enlight the enhanced ductility of metals in dynamic conditions compared

to quasi-static conditions. They observed also the fragmentation of rings at high velocity testings. They
have noted that the number of fragments increases with the loading velocity. More recently, Altynova et al.

(1996) have also performed expansion of rings (Al, T6AL, Cu alloys) by electromagnetic means. Trends

observed by Grady and Benson (1983) are retrieved by these authors. The fragmentation is also observed in

axisymmetric jet formed by the collapse of a linear shaped liner under explosive loading. During the flight,
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the jet is stretched at high strain rate and fragments are sometimes observed (see Karpp and Simon, 1976;

Chou et al., 1977).

Many contributions have been devoted to the analysis of bifurcation and instabilities occuring during

plastic loading. Most of them were concerned by quasi-static situations. Hill and Hutchinson (1975) have
developed a quasi-static bifurcation analysis for a rectangular plate subjected to plane strain tension. The

material has a rate independent behavior. Depending on the deformation state, the bifurcation can occur in

the elliptic, parabolic or hyperbolic regimes. Young (1976) carried out a similar analysis in plane strain

compression. Benallal and Tvergaard (1995) examined the role of non local effects on bifurcation in the

plane strain tension and compression tests.

Multiple necking during high strain rate loadings is the result of inertia effects. Therefore the above

mentioned analyses have to be extended to account for inertia forces. Sorensen and Freund (1998) have

extended the approach of Hill and Hutchinson (1975) in dynamic conditions. Acceleration term in the
momentum balance is taken into account. But the hydrostatic pressure contribution resulting from lateral

inertia is ignored so that this dynamic analysis is valid for large ratio of length to width of the block. The

material is rate independent and the incompressibility assumption is adopted. The elliptic, hyperbolic and

parabolic regimes are identical to those established by Hill and Hutchinson (1975). Owing to the inertia

term in the momentum balance, the rate of growth of the bifurcation mode is evaluated. It is found that

long wavelength modes are suppressed by inertia. Shenoy and Freund (1999) improved the previous work

by taking into account of the hydrostatic pressure contribution due to the lateral inertia. In this analysis,

the material behavior is rate independent with an isotropic hardening. By considering the rate of growth of
perturbations, it is observed that a particular wavelength is selected which characterizes the size of the

fragments. The authors claim that inertia is responsible for this phenomenon since they considered that

inertia suppress both short and long wavelength mode of bifurcation. In addition the authors have en-

lightened the fact that the number of necks is not influenced by the level of strain hardening.

Ring experiments have also been modelled by finite element calculations. An interesting work has been

performed by Han and Tvergaard (1995). The material is a rate independent elastic–plastic solid. A small

imperfection triggers the onset of necking. Nevertheless, due to wave propagation, the number of necks can

exceed the number of initial thin points introduced by the imperfection. The authors have shown that the
neck spacing is dependent on the loading and on the aspect ratio of the cross section. On the contrary, the

magnitude of the initial defect and of the strain hardening coefficient does not influence the necking pattern.

The previous works concern rate-independent material. For rate dependent material, the problem of a

rectangular block subjected to tension has been analysed by Hutchinson et al. (1978). Using a linear

perturbation analysis, the authors have concluded that the strain rate sensitivity effects damp short

wavelengths. The effect of strain rate sensitivity has been already mentioned by Hutchinson and Neale

(1977) in the long wavelength analysis of neck formation in a viscoplastic bar. To model fragmentation in

viscoplastic solids, Fressengeas and Molinari (1994) have extended the previous work by adding inertial
effects. It was demonstrated that inertia slows down the growth of long wavelengths. This role in combi-

nation with the stabilizing aspects of viscosity and of bidimensional effects on short wavelengths leads to the

selection of an intermediate wavelength (the fastest growing mode). Note that the fastest growing mode is

time dependent. The role of inertia was already mentioned by Fressengeas and Molinari (1985). An ex-

tension of the theory proposed by Fressengeas and Molinari (1994) has been carried out by Jeanclaude and

Fressengeas (1997). They analysed the fragmentation of a rapidly stretching bar in an axisymmetric

loading. This bidimensional dynamic analysis has provided similar results (selection of an intermediate

wavelength due to inertia and strain rate sensitivity).
In this paper, a theoretical analysis of dynamic bifurcation of a cylindrical bar is performed. The material

is incompressible rate insensitive with strain hardening. Owing to a linear perturbation analysis, the rate of

growth of the perturbation is evaluated. Various stabilizing effects delay the growth of disturbances. Inertia

slows down the long wavelengths whereas bidimensional effects damp the short wavelengths.

1996 S. Mercier, A. Molinari / International Journal of Solids and Structures 40 (2003) 1995–2016



The paper is organized as follows. In Section 2, the linear stability analysis is developed for a cylindrical

bar and a rate insensitive hardening material. In Section 3, an extension of the contribution of Shenoy and

Freund (1999) for the dynamic bifurcation of a rectangular block (rate insensitive materials) is proposed in

a Lagrangian frame. Next, the dynamic instability of cylindrical bars and rectangular sheets for rate sen-
sitive materials is presented in Section 4. Comparisons are carried out with published results (Fressengeas

and Molinari, 1994; Jeanclaude and Fressengeas, 1997). Finally, in Section 5, new results are proposed for a

cylindrical bar made of a rate insensitive material with strain hardening.

2. Rate insensitive material under axisymmetric loading

Since an axisymmetric problem is considered here, the cylindrical coordinate system is adopted, asso-

ciated to the frame (er; eh; ez). The Lagrangian coordinates of a material point are noted (R, h, Z). The
cylinder occupies in the undeformed state the region �L0 < Z < L0 and 06R6R0, where 2L0 is the initial

length of the bar, R0 is the initial radius. The body is subjected to uniform velocity �V0ez applied at the

extremities Z ¼ �L0 (see Fig. 1). In the deformed state at current time t, the position of a particle is given by

r ¼ rðR; Z; tÞ z ¼ zðR; Z; tÞ ð1Þ
The material is assumed incompressible, rate independent with strain hardening. The behavior is defined

by the constitutive law developed by St€ooren and Rice (1975). In axisymmetric loading, the Jaumann rate r̂r

of the Cauchy stress tensor r is:

r̂rrr ¼ ðl� þ lÞDrr � ðl � l�ÞDhh � _pp ð2aÞ

r̂rhh ¼ ðl� þ lÞDhh � ðl � l�ÞDrr � _pp ð2bÞ

r̂rzz ¼ 2l�Dzz � _pp r̂rij ¼ 2lDij for i 6¼ j ð2cÞ

D is the strain rate tensor. l� and l are the moduli defined by:

l� ¼ 1

3

ore

o�e
l ¼ 1

3

re

�e
ð3Þ

where re ¼ ð3=2s : sÞ1=2 is the effective stress and s is the deviator of the Cauchy stress tensor. The effective

strain is defined by �e ¼
R
De dt, with De ¼ ð2=3D : DÞ1=2 being the effective strain rate. Furthermore, the

hardening behavior is specified by the Hollomon�s law (1945):

re ¼ r0�
n
e ð4Þ

with n the strain hardening exponent, r0 a scaling factor.

2Lo

Ro

ez
VoOoV

free surface

Fig. 1. View of the cylindrical bar, of initial length 2L0 and of initial radius R0. Velocities �V0 are applied at the extremities Z ¼ �L0.

The lateral surface R ¼ R0 is traction free.
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The boundary conditions of the problem are, respectively at the extremities Z ¼ �L0 and at the lateral

surface R ¼ R0:

TzrðR; Z ¼ �L0; tÞ ¼ 0 TzhðR; Z ¼ �L0; tÞ ¼ 0 vzðR; Z ¼ �L0; tÞ ¼ �V0 ð5aÞ

TrrðR0; Z; tÞ ¼ 0 TrhðR0; Z; tÞ ¼ 0 TrzðR0; Z; tÞ ¼ 0 ð5bÞ

where T is the nominal stress tensor related to the Cauchy stress tensor r by:

T ¼ F�1 	 r ð6Þ

with F being the gradient of the deformation. The incompressibility condition ðdetF ¼ 1Þ has been used.

The traction vector t, acting at the point across the surface whose outward normal is n, has been defined as

in Malvern�s book (1969) : t ¼ n 	 T ðti ¼ njTjiÞ. In the following, all mechanical quantities and operators are

defined as in Malvern�s book (1969).
The homogeneous deformation is given by Jeanclaude and Fressengeas (1997):

z ¼ Z=�0 v0z ¼
V0
L0

Z ð7aÞ

r ¼ R
ffiffiffi
�0

p
v0r ¼ � 1

2

V0
L0

Rð�0Þ3=2 ð7bÞ

with

�0 ¼ 1

1þ ðV0=L0Þt
ð8Þ

The corresponding Cauchy stress is:

½r0
 ¼
�pI 0 0
0 �pI 0

0 0 r0
e � pI

2
4

3
5

RhZ

ð9Þ

pI is the inertial pressure due to lateral deformation and r0
e the background effective stress. By verifying the

equation of motion and the boundary conditions, it is straightforward to obtain pI:

pI ¼ 3

8

V0
L0

� �2

qð�0Þ3ðR2
0 � R2Þ ð10Þ

with q the mass density.

In the following, the linear stability of the homogeneous deformation is investigated so as to determine
the wavelength of the perturbation associated to the fastest growth rate.

2.1. Linear perturbation analysis

The analysis of the linear stability of the homogeneous solution defined by the relationships (7)–(10) is

performed in a Lagrangian formulation. A perturbation in velocity dv, respecting the axisymmetry of the

problem, is added to the background field at a given time t0, without any initial disturbance of the ac-

celeration. Then

v ¼ v0 þ dv c ¼ c0 þ dc ð11Þ
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with dvðt0Þ ¼ 0, dvðtþ0 Þ 6¼ 0 and dcðt0Þ ¼ dcðtþ0 Þ ¼ 0. The validity of this assumption will be discussed in

Section 2.2.4. Since the material is rate independent and the acceleration is not modified at time tþ0 , the
background nominal stress tensor To satisfies the momentum equation at time t0 and tþ0 :

DivT0 ¼ q_vv ð12Þ
where ð	Þ is the material time derivative. Note that a perturbation in velocity and in acceleration added to

the homogeneous background solution would imply a perturbation of the nominal stress tensor to respect

the momentum equation (12).

The initial evolution of the velocity disturbance is sought using an incremental formulation. The rate of

the momentum equation is:

Div _TT ¼ q€vv ð13Þ
where Div is the Lagrangian divergence operator. The velocity gradient L ¼ _FF 	 F�1 can be written at time t0
and tþ0 as:

½L
RhZ ¼

1ffiffiffi
�0

p ovr
oR

0 �0
ovr
oZ

0
vrffiffiffi
�0

p
R

0

1ffiffiffi
�0

p ovz
oR

0 �0
ovz
oZ

2
666664

3
777775 ð14Þ

In calculating (14), we have used the fact that Fðtþ0 Þ ¼ Fðt0Þ ¼ F0 (background solution) since a pertur-

bation in velocity (and not in position) is considered.

Using the incompressibility condition detF ¼ 1, the rate of the nominal stress, obtained by time deri-

vation of Eq. (6), is related to the Jaumann rate of the Cauchy stress r̂r, for t6 tþ0 :

_TT ¼ F�1
0 	 ðr̂r �D 	 r0 � r0 	 XÞ ð15Þ

with X the spin tensor. r0 is the background stress tensor since the acceleration is not perturbed at time tþ0 .
According to relationships (2), (9), (14) and (15), the non zero components of _TT are:

_TTrr ¼ ðl� þ l þ pIÞ vr;R
�0

� ðl � l�Þ vr
�0R

� _ppffiffiffi
�0

p ð16aÞ

_TTrz ¼ l

�
� r0

e

2
þ pI

� ffiffiffi
�0

p
vr;Z þ l

�
� r0

e

2

�
vz;R
�0

ð16bÞ

_TThh ¼ �ðl � l�Þ vr;R
�0

þ ðl� þ l þ pIÞ vr
�0R

� _ppffiffiffi
�0

p ð16cÞ

_TTzr ¼ l

�
þ r0

e

2

�
�0

2

vr;Z þ l

�
� r0

e

2
þ pI

� ffiffiffi
�0

p
vz;R ð16dÞ

_TTzz ¼ ð2l� � r0
e þ pIÞ�02vz;Z � �0 _pp ð16eÞ

where the comma stands for the partial derivative, as for instance, ð Þ;R ¼ oð Þ=oR. _TT must satisfy the

momentum equation (13). Cross-differentiating the obtained relationships so as to eliminate the rate of

pressure _pp ¼ �ð1=3Þtr ð _rrÞ and using the incompressibility condition

trD ¼ 0 or
vr;Rffiffiffi
�0

p þ vrffiffiffi
�0

p
R
þ �0vz;Z ¼ 0; ð17Þ
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a single partial differential equation is found for t6 tþ0 :

1ffiffiffi
�0

p l�
�

þ r0
e

2

�
vr;RRZ
�

þ vr;RZ
R

� vr;Z
R2

�
þ l

�
þ r0

e

2

�
�0

5
2vr;ZZZ þ l

�
� 2l� þ r0

e

2

�
�0vz;RZZ

� l

�
� r0

e

2

�
1

�02
vz;RRR
�

þ vz;RR
R

� vz;R
R2

�
� pI;RR

vr;Zffiffiffi
�0

p ¼ q €vvr;Z
ffiffiffi
�0

p
 

� €vvz;R
�0

!
ð18Þ

It is noteworthly that the background velocity field (7) satisfies both incompressibility (17) and Eq. (18).

Considering the expressions (17) and (18) at time t0 and tþ0 and the linear dependence with respect to v, the
perturbation dv at time tþ0 is found to satisfy Eqs. (17) and (18).

A stream function UðR; Z; tÞ is introduced such that the perturbed velocity is:

dvr ¼
ffiffiffi
�0

p

R
oU
oZ

dvz ¼ � 1

R�0
oU
oR

ð19Þ

It follows that the incompressibility condition (17) is automatically satisfied. By substitution of Eq. (19) into

Eq. (18), a fourth order partial differential equation governing the evolution of U is obtained:

ðl � 3l�Þ U;RZZ

R2

�
� U;RRZZ

R

�
þ l

�
þ r0

e

2

�
�0

3 U;ZZZZ

R

� l

�
� r0

e

2

�
1

�03
3

R4
U;R

�
� 3

R3
U;RR þ

2

R2
U;RRR �

1

R
U;RRRR

�

¼ q �0
€UU;ZZ

R

 
� 1

�02
€UU;R

R2

 
�

€UU;RR

R

!
� V0

L0

�0
2
_UU;ZZ

R

 
þ 2

�0

_UU;R

R2

 
�

_UU;RR

R

!!!
ð20Þ

The perturbed boundary conditions, derived from the relationships (5) are

dvzðR;�L0; tÞ ¼ 0; d _TTzrðR;�L0; tÞ ¼ 0 ð21aÞ

d _TTrrðR0; Z; tÞ ¼ 0; d _TTrzðR0; Z; tÞ ¼ 0 ð21bÞ

Using the definition of the velocity in terms of the stream function (19) and Eq. (16), the following con-

ditions at Z ¼ �L0 are obtained:

oU
oR

¼ 0; l

�
þ r0

e

2

�
�0

3
U;zz

R
þ l

�
þ pI � r0

e

2

�
U;R

R2

�
� U;RR

R

�
¼ 0 ð22Þ

and for R ¼ R0:

�0
3

U;zz þ
U;R

R

�
� U;RR

�
¼ 0 ð23aÞ

l

�
� r0

e

2

�
1

�02

�
� U;R

R3
þ U;RR

R2
� U;RRR

R

�
� 3l�
�

� r0
e

2

�
�0

U;RZZ

R
þ 2l�0

U;ZZ

R2
� 3

4

V0
L0

� �2

q�0
4

U;ZZ

þ q 2
V0
L0

_UU;R

R

 
þ

€UU;R

R�0

!
¼ 0 ð23bÞ
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2.2. Axisymmetric mode

The purpose of this work is to evaluate the possibility of axisymmetric multiple necking in dynamic

loading. Additional conditions along the centreline are necessary to respect axisymmetry:

dvrð0; Z; tÞ ¼ 0 d _TTrzð0; Z; tÞ ¼ 0 ð24Þ

Therefore, to satisfy (24) perturbation modes are searched of the form:

UðR; Z; tÞ ¼ ARegt sinðkZÞI1ðlRÞ ð25Þ

where k and l are respectively the Lagrangian longitudinal and radial wavenumbers; g is the growth rate of

the perturbation, which is a real number (see Appendix A). In the following, the frozen coefficient theory is

adopted which implies that the parameters k and l are considered as time independent. The mode is stable

(resp. unstable) when g < 0 (resp. g > 0). I1 represents the modified Bessel function of the first order. A is an

amplitude factor. Note that the boundary conditions (22) are satisfied as soon as

kL0 ¼ pp ð26Þ

where p is an integer which determines the number of initial thin points induced by the perturbation.

The substitution of (25) into (20) leads to a fourth order algebraic equation for the radial wavenumber l:

l

�
� r0

e

2

�
l4

�03
þ ðl
�

� 3l�Þk2 � q
g2

�02
� 2q

V0
L0

g
�0

�
l2 þ k4 l

�
þ r0

e

2

�
�0

3 þ q�0k2g2 � q
V0
L0

�0
2

k2g ¼ 0 ð27Þ

As discussed by Hill and Hutchinson (1975), three different regimes exist: the elliptic domain where no roots
are reals, the parabolic domain with two real roots and the hyperbolic one with four real roots. These

regimes are analysed in the following.

2.2.1. Elliptic domain

2.2.1.1. Four complex roots. The four complex roots of Eq. (27) are noted

�lc1ðg; kÞ; �lc2ðg; kÞ with lc2 ¼ l
c

1 ð28Þ

where ð	Þ designates the conjugate of the complex number ð	Þ.
The perturbed stream function U has to be real; therefore U has the form:

U ¼ Regt sinðkZÞfAI1ðlc1RÞ þ AI1ðl
c

1RÞg ð29Þ

The perturbated stream function must satisfy the boundary conditions (23). This provides two relation-

ships:

RefAX1ðlc1Þg ¼ 0 RefAX2ðlc1Þg ¼ 0 ð30Þ

The notationRef	g represents the real part of the complex number f	g. The expression X1ðlÞ, obtained from
(23a), has the following form:

X1ðlÞ ¼ k2�0
 

þ l
�0

� �2
!
I1ðlR0Þ ð31Þ
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and X2ðlÞ, deduced from (23b), is:

X2ðlÞ ¼ �
l � r0e

2

�02
l3I 01ðlR0Þ
�

þ l2I1ðlR0Þ
R0

�
� 2l�0k2

I1ðlR0Þ
R0

þ 3l�
�

� r0
e

2

�
�0
k2

R0

ðI1ðlR0Þ þ R0lI 01ðlR0ÞÞ

þ 3

4

V0
L0

� �2

q�0
4

k2R0I1ðlR0Þ þ q
2V0
L0R0

gðI1ðlR0Þ
�

þ R0lI 01ðlR0ÞÞ þ
g2

R0�0
ðI1ðlR0Þ þ R0lI 01ðlR0ÞÞ

�
ð32Þ

I 01 represents the derivative of the Bessel function I1. The two conditions (30) are valid for any amplitude

factor A and merge into an unique relationship after elimination of the complex number A:

ImfX1ðlc1ÞX 2ðlc1Þg ¼ 0 ð33Þ

where Imf	g designates the imaginary part of the complex number f	g. For a given wavenumber k, the
growth rate of the perturbation g is solution of Eq. (33).

2.2.1.2. Four purely imaginary roots. The four roots are supposed to be purely imaginary and are noted

�ili1ðg; kÞ, �ili2ðg; kÞ, where i is the complex number defined by i2 ¼ �1. In this regime, the necessary form

for the perturbed stream function U is:

U ¼ Regt sinðkZÞ½iB1I1ðili1RÞ þ iB2I1ðili2RÞ
 ð34Þ

B1 and B2 are real amplitude factors. As before, from the boundary conditions (23) an equation for the rate

of growth g is found:

X1ðili1ÞX2ðili2Þ � X1ðili2ÞX2ðili1Þ ¼ 0 ð35Þ

2.2.2. Parabolic domain

Two roots are real, noted �lp1ðg; kÞ; the two others are purely imaginary, noted �ilp2ðg; kÞ. The necessary
form for the stream function U is

U ¼ Regt sinðkZÞ½B1I1ðlp1RÞ þ iB2I1ðilp2RÞ
 ð36Þ
B1 and B2 are still real amplitude factors. Since Eq. (23) must be satisfied for any B1 and B2, the equation

governing the rate of growth of the perturbation g is given by:

X1ðlp1ÞX2ðilp2Þ � X1ðilp2ÞX2ðlp1Þ ¼ 0 ð37Þ

2.2.3. Hyperbolic domain

The four roots of Eq. (27) are real, noted �lh1ðg; kÞ, �lh2ðg; kÞ. The stream function U has the following

form:

U ¼ Regt sinðkZÞ½B1I1ðlh1RÞ þ B2I1ðlh2RÞ
 ð38Þ

Owing to the boundary conditions (23), g is solution of:

X1ðlh1ÞX2ðlh2Þ � X1ðlh2ÞX2ðlh1Þ ¼ 0 ð39Þ

2.2.4. Discussions

The regime in which bifurcation occurs, depends on the size of the bar ðL0;R0Þ, on the material behavior
and on the loading history. It is shown in Appendix A that for each longitudinal wavenumber k, two
growth rates g1 and g2 can be found. Thus two possible modes for the perturbation can exist:
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Uð1;2Þ ¼ egð1;2Þt sinðkZÞfð1;2ÞðRÞ ð40Þ

Note that all boundary conditions (22) and (23) are satisfied by the two stream functions Uð1;2Þ. The last

condition to fulfill is the zero initial value of the perturbed acceleration vector. In our approach, this
condition cannot be satisfied rigorously, because the radial dependency of the stream function is expanded

with only one trial function. If an infinite number of appropriate trial functions ðIn; nP 1Þ was used, the
condition dc ¼ 0 would be exactly satisfied. In the present analysis, the authors have kept only the fun-

damental term in the expansion serie. General treatments might be done as in heat transfer problem; see

Ozisik (1968). However, it is seen in Appendix B, by linear combination of the two possible modes U1 and

U2, that dc ¼ 0 at time tþ0 can be approached with good accuracy for bifurcation modes with large growth

rate. In Section 5, only the most unstable mode of perturbation is presented.

Note that the proposed linear stability analysis evaluates the instantaneous growth rate of a perturbation
associated to a wavenumber k. Since the governing equations for the stream function U are time dependent,

so is the growth rate g. Then a perturbation can be unstable at a given time and stable at a later time (or the

contrary). An instantaneous positive growth rate for the perturbation k at a given time is not a proof of the

long term instability of this perturbation. Nevertheless, it will be seen in Section 5, that such approach can

provide useful informations concerning the dynamic necking of cylindrical bars.

3. Rate insensitive material under plane strain loading

The bifurcation analysis of a rectangular plate, in dynamic plane strain extension, has been studied by

Shenoy and Freund (1999) when the material has a rate insensitive behavior. These authors did not perform

a full Lagrangian analysis, since, at each step of the deformation, the current configuration is taken as the

reference. In this section, a full Lagrangian solution to this problem is proposed and compared with results

of Shenoy and Freund (1999). A cartesian coordinate system is adopted, associated to the frame (ex, ey, ez).

The Lagrangian coordinates of a particle are X1;X2. The body occupies the region �L1 6X1 6 L1 and

�L2 6X2 6L2 and is stretched with the velocity �V0ex at X1 ¼ �L1, under plane strain conditions. The

constitutive law is given by St€ooren and Rice (1975):

r̂r11 ¼ 2l�D11 � _pp r̂r22 ¼ 2l�D22 � _pp r̂r12 ¼ 2lD12 ð41Þ

l and l� are defined by Eq. (3). The hardening is governed by (4).

The homogeneous solution is given by Fressengeas and Molinari (1994):

x1 ¼
X1

�0
x2 ¼ X2�

0 with �0 ¼ 1

1þ V0
L1
t

ð42Þ

The homogeneous Cauchy stress is

½r0
 ¼ r0 � pI 0

0 �pI

� �
with pI ¼ q

V0
L1

� �2

ðl22 � X 2
2 Þ�0

4 ð43Þ

Due to the plane strain condition, r0 is related to the background effective stress r0
e by r0 ¼ 2r0

e=
ffiffiffi
3

p
.

The homogeneous deformation is perturbed as in Section 2. A perturbation in velocity is added at time t0,
without any initial change in the acceleration field. In the following, the velocity field v is the sum of the

homogeneous field and of a perturbation depending on (X1, X2). As a consequence, the velocity gradient L,
valid at time t0 and tþ0 is defined as:
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½L
 ¼
�0
ov1
oX1

1

�0
ov1
oX2

�0
ov2
oX1

1

�0
ov2
oX2

2
664

3
775 ð44Þ

The rate of the nominal stress tensor _TT is expressed in terms of the velocity field with use of Eqs. (15), (41)

and (44). _pp is eliminated by cross differentiation of the momentum equation:

_TTji;j ¼ q _cci ð45Þ

where the notation ð	Þ;j stands for the partial derivative oð	Þ=oXj. After some algebraic development similar

to those of Section 2, and with use of the incompressibility condition:

�0
ov1
oX1

þ 1

�0
ov2
oX2

¼ 0 ð46Þ

a third order partial differential equation is obtained:

l

�
� r0

2

�
v1;222
�03

þ ð2l� � lÞ �0v1;112
�

� v2;122
�0

�
� l

�
þ r0

2

�
�0

3

v2;111 � b
v2;1
�0

¼ q
€vv1;2
�0

 
� �0€vv2;1

!
ð47Þ

The last two relationships are satisfied by both the homogeneous velocity and the perturbed velocity dv.
The following analysis is similar to that of Section 2. To satisfy (46), we introduce a perturbed stream

function U such that:

dv1 ¼ � 1

�0
U;2 dv2 ¼ �0U;1 ð48Þ

The relationship (47), describing the evolution of the perturbation, is written in terms of U:

l

�
� r0

2

�
1

�04
U;2222 þ 2ð2l� � lÞU;1122 þ l

�
þ r0

2

�
�0

4

U;1111

¼ q �0
2 €UU;11

�
þ 1

�02
€UU;22 þ

2V0
L1�0

_UU;22 �
2V0
L1

�0
3 _UU;11

�
ð49Þ

Note that Shenoy and Freund (1999) have analysed the same problem, assuming that the current con-
figuration is the reference one. When adopting this assumption (�0 ¼ 1) in our formulation, the relationship

(27) of Shenoy and Freund (1999) can not be retrieved. The difference is due to the rate of acceleration term

obtained by time derivation of Eq. (48). In the proposed analysis, the time derivative of the term �0 is
accounted for and modifies the expression (49) by the additional terms

2V0
L1�0

_UU;22 �
2V0
L1

�0
3 _UU;11

The perturbed boundary conditions:

dv1ð�L1;X2; tÞ ¼ 0 d _TT12ð�L1;X2; tÞ ¼ 0 ð50aÞ

d _TT21ðX1;�L2; tÞ ¼ 0 d _TT22ðX1;�L2; tÞ ¼ 0; ð50bÞ

can be expressed in terms of U. At X1 ¼ �L1, we have

U2 ¼ 0 � l

�
þ pI � r0

2

�
1

�0
U;22 þ �0

3

l

�
þ r0

2

�
U;11 ¼ 0 ð51Þ
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and at the extremities X2 ¼ �L2:

�U;22 þ �0
4

U;11 ¼ 0 ð52aÞ

r0

2

�
þ l � 4l�

�
�0U;112 � l

�
� r0

2

�
1

�03
U;222 ��2q�0

5 V 2
0 L2

L2
1

U;11 ¼ �q 2
V0
L1

_//;2

�
þ 1

�0
€UU;2

�
ð52bÞ

Only symmetric modes of bifurcation are considered in the current analysis. Additional relationships
need to be checked to satisfy the symmetry:

dv2ðX1; 0; tÞ ¼ 0 d _TT21ðX1; 0; tÞ ¼ 0 ð53Þ
As in Fressengeas and Molinari (1994), the perturbed stream function U is chosen of the following form:

U ¼ Aegt sinðkX1Þ expðil�0
2

X2Þ ð54Þ
The substitution of (54) into (49) provides a fourth order algebraic equation for the transverse wavenumber
l:

l

�
� r0

2

�
l4 þ ð4l�

�
� 2lÞk2 þ q

g2

�02
þ 2q

V0
L1

g
�0

�
l2 þ k4 l

�
þ r0

2

�
þ q

�02
k2g2 � 2q

V0
�0L1

k2g ¼ 0 ð55Þ

As in the axisymmetric analysis, three different regimes (elliptic, parabolic and hyperbolic) can be in-

vestigated. The rate of growth of the perturbation g is found as the solution of a non linear equation re-

sulting from the boundary conditions (52a) and (52b) and from the condition of symmetry (53). The details

are not provided in the present paper (similar to Section 2). Note that, as in Appendix B, it can be shown

that the initial condition of zero perturbed acceleration can be approached with good accuracy.

To capture the bifurcation rate g, Shenoy and Freund (1999) introduced the ‘‘necking rate’’ index N as
the ratio of the rate of growth g to the background uniform strain rate V0=L1:

N ¼ 1

2

L1g
V0

� �2

ð56Þ

Note that the bifurcation exists if the necking rate N is large compared to unity.
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Fig. 2. Necking of a stretched plate. Evolution of the necking rate as a function of the longitudinal wavenumber k. The results are

compared to those of Shenoy and Freund (1999) and to the long wavelength analysis. The material, rate insensitive with strain

hardening, is representative of an OHFC copper: r0 ¼ 490 MPa, n ¼ 0:4 q ¼ 8900 kg/m3, �e ¼ ð2=
ffiffiffi
3

p
Þnð1þ 0:0026Þ. The configuration

is 2L1 ¼ 100 mm, 2L2 ¼ 2 mm and V0 ¼ �33 m/s.
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For illustration, as in Shenoy and Freund (1999), the material considered is an OFHC copper whose

properties have been reported by Altynova et al. (1996) (r0 ¼ 490 MPa, n ¼ 0:4, q ¼ 8900 kg/m3). The

geometry of the plate is 2L1 ¼ 100 mm and 2L2 ¼ 2 mm (aspect ratio L2=L1 ¼ 0:01) in order to be consistent

with the size of rings used by Altynova et al. (1996). The current configuration is taken as reference (�0 ¼ 1).
The velocity applied at the extremities of the plate is V0 ¼ �33 m/s. The homogeneous effective strain in the

plate is �0e ¼ ð2=
ffiffiffi
3

p
Þnð1þ 0:0026Þ. The present analysis is compared to results of Shenoy and Freund (1999,

Fig. 2) and of the dynamic long wavelength analysis (see formula 3–11, Fressengeas and Molinari, 1985). It

is observed on Fig. 2 that long wavelength perturbations are slowed down by inertia. The necking rate N is

close to zero when the longitudinal wavenumber k is small. In Section 5, it is seen that the two dimensional

effects are mostly responsible for the damping of short wavelength modes. As a consequence of the in-

terplay between the stabilizing role of inertia and of 2D effects, a wavelength of maximum growth rate is

selected. Compared to the analysis of Shenoy and Freund (1999), the necking rate N predicted by our
approach is lower, due to additional terms in the rate of acceleration which enhance the influence of inertia.

4. Instability analysis for rate sensitive material

The aim of this section is to analyse the stability of the deformation of viscoplastic non-hardening

materials for two loading conditions: plane strain and axisymmetric extensions. At a given time t0, a time
dependent perturbation is added to the position of the particle. This implies a disturbance in the velocity, in

the acceleration and also in the stress tensor (since the material is rate dependent). In the following, the

background position, velocity, Cauchy stress and nominal stress are noted x, v, r and T; the corresponding

perturbed quantities are designated as dx, dv, dr and dT.
The viscoplastic behavior is described by the J2 flow theory

sij ¼
2

3
re

Dij

de
ð57Þ

The effective Cauchy stress re is linked to the effective strain rate de by a powerlaw:

re ¼ r0dm
e ð58Þ

where m is the strain rate sensitivity.

4.1. Plane strain problem

The background solution is defined by Eqs. (42) and (43). The perturbation of this solution is performed

within a Lagrangian frame. The disturbance of the nominal stress is given by:

dT ¼ ðF þ dFÞ�1 	 ðr þ drÞ � F�1 	 r ð59Þ

whose components are:

dT11 ¼ �0 ds11

�
� dp � �0

2r0
effiffiffi
3

p
�

� pI
�

dx1;1

�
dT22 ¼

1

�0
ds22

�
� dp þ pI

�0
dx2;2

�
ð60aÞ

dT21 ¼
1

�0
ds21

�
� �0

2r0
effiffiffi
3

p
�

� pI
�

dx2;1

�
dT12 ¼ �0 ds12

�
þ pI

�0
dx1;2

�
ð60bÞ

In plane strain conditions, the components of the perturbed Cauchy stress deviatoric tensor ds are obtained
from (57):
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ds11 ¼
2m
3

r0
e

d0
e

dD11 ds22 ¼ �ds11 ds12 ¼
2

3

r0
e

d0
e

dD12 ð61Þ

The incompressibility condition (detF ¼ 1) expressed in terms of the perturbation gives:

�0
odx1
oX1

þ 1

�0
odx2
oX2

¼ 0 ð62Þ

To satisfy (62), a stream function U is introduced such that:

dx1 ¼ � 1

�0
U;2 dx2 ¼ �0U;1 ð63Þ

After elimination of the pressure perturbation dp in the perturbed momentum equation (DivdT ¼ q _ddv), we
obtain by using the incompressibility condition (62) and the definition of the stream function (63), a fourth

order partial differential equation for U:

r0
e

3d0
e

1

�0 4
_UU;2222

�
þ �0

4 _UU;1111 � 2ð1� 2mÞ _UU;1122

�
¼ q �0

2 €UU;11

�
þ 1

�02
€UU;22 þ 2

V0
L1

1

�0
_UU;22

�
� �0

3 _UU;11

��
ð64Þ

The boundary conditions are dv1 ¼ 0 and dT12 ¼ 0 for X1 ¼ �L1, and dT21 ¼ 0, dT22 ¼ 0 for X2 ¼ �L2. The

last two conditions are written in terms of U:

r0
e

3d0
e

�0
2 _UU;11

�
� 1

�02
_UU;22

�
� 2ffiffiffi

3
p �0

2

r0
eU;11 ¼ 0 ð65aÞ

4m�0r0
e

3d0
e

_UU;112 �
r0
e

3d0
e

�0 _UU;112

 
�

_UU;222

�03

!
� 2q

V0
L1

� �2

�0
5

L2U;11 ¼ q 2
V0
L1

_UU;2

�
þ 1

�0
€UU;2

�
ð65bÞ

Only symmetric instability modes are considered in the current analysis. So, additional conditions along

the centreline need to be checked:

dv2ðX1; 0; tÞ ¼ 0 dT21ðX1; 0; tÞ ¼ 0 ð66Þ

Finally, the stream function U is taken as in (54). Details are not presented here (similar as in Section 2).

The growth rate of the perturbation g, for a given longitudinal wavenumber k, is obtained by combining

(54), (64), (65) and (66). Since the material behavior is viscoplastic, it can be noted that instability occurs in

the elliptic domain (see Fressengeas and Molinari, 1994).

To capture the evolution of the perturbation relative to the homogeneous background strain rate, a

growth rate index G is defined (see Fressengeas and Molinari, 1994):

G ¼ mgL1

V0
ð67Þ

A dimensionless number I characterizing inertia effects relative to the viscoplastic effects is defined as:

I ¼ qV 2
0

r0
2ffiffi
3

p
� �mþ1

V0
l1

� �m ð68Þ

This problem has already been investigated by Fressengeas and Molinari (1994), using a different scheme.

The main difference is the definition of the stream function using the incompressibility condition (detF ¼ 1)

rather than the other condition ( _detFdetF ¼ 0). Therefore, in our approach, U is linked to the position.
In Fressengeas and Molinari (1994), U is linked to the velocity. Moreover, in their approach, the rate

of growth of the perturbation is solution of an ordinary differential equation. For illustration, the
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material behavior (representative of an OHFC copper) is defined by Eq. (58) with the following charac-

teristics (r0 ¼ 1:1108 SI, m ¼ 0:05, q ¼ 8900 kg/m3 (see Fressengeas and Molinari, 1994). The size of

the plate is given by L1 ¼ 0:03 m and L2=L1 ¼ 0:01. The results are presented in Fig. 3 for two values of I
(I ¼ 4 and I ¼ 0:4). The results of the dynamic long wavelength (see formula 3–11, Fressengeas and

Molinari, 1985) and of the quasi-static analyses are superimposed. The results provided by the present

analysis are identical to those obtained previously by Fressengeas and Molinari (1994, Fig. 1). As noted by

these authors, inertia slows down the long wavelengths. The short wavelengths are damped by the biaxial

effects; the quasi-static and the dynamic approaches provide the same results for short wavelengths. The

growth rate G is maximum for a finite wavelength, due to the interplay between inertia and viscous biaxial

effects.

4.2. Axisymmetric problem

The homogeneous solution is defined by relationships (7)–(10). The perturbation of the nominal stress,

given by Eq. (59), is expressed as:

dTrr ¼
1ffiffiffi
�0

p dsrr

�
� dp þ pIffiffiffi

�0
p dxr;R

�
dTrz ¼

1ffiffiffi
�0

p ðdsrz � �0ðr0
e � pIÞdxr;Z ð69aÞ

dThh ¼
1ffiffiffi
�0

p dshh

�
� dp þ pIffiffiffi

�0
p dxr

R

�
ð69bÞ

dTzr ¼ �0 dsrz

�
þ pIffiffiffi

�0
p dxz;R

�
dTzz ¼ �0ðdszz � dp � �0ðr0

e � pIÞdxz;ZÞ ð69cÞ

In axisymmetric loading, the perturbed deviatoric stress ds is defined by:

dsrr ¼
2

3

r0
e

d0
e

dDrr

�
� m� 1

2
dDzz

�
dshh ¼

2

3

r0
e

d0
e

dDhh

�
� m� 1

2
dDzz

�
ð70aÞ
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Fig. 3. Necking of a stretched plate. Effect of the dimensionless number I (I ¼ 4 or I ¼ 0:4) on the initial growth rate G. The results are
compared to the long wavelength dynamic and to the quasi-static analyses. The present approach provides results identical to Fres-

sengeas and Molinari (1994). The material (an OFHC copper) is viscoplastic without strain hardening: r0 ¼ 1:10108 SI, m ¼ 0:05 and

q ¼ 8900 kg/m3. The configuration adopted is L1 ¼ 0:03 m and L2 ¼ 0:01L1.
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dszz ¼
2m
3

r0
e

d0
e

dDzz dsij ¼
2

3

r0
e

d0
e

dDij i 6¼ j ð70bÞ

The incompressibility condition (detF ¼ 1)

dxr;Rffiffiffi
�0

p þ dxrffiffiffi
�0

p
R
þ �0dxz;Z ¼ 0; ð71Þ

leads to the introduction of a stream function U such that the perturbed position is:

dxr ¼
ffiffiffi
�0

p

R
oU
oZ

dxz ¼ � 1

R�0
oU
oR

ð72Þ

The pressure dp is eliminated by cross differentiation in the perturbed momentum equation. Using the

incompressibility condition, a fourth order partial differential equation is obtained which governs the

evolution of U:

r0
e

3d0
e

ð3m
 

� 1Þ _UU;ZZRR
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� €UU;RR
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� _UU;RR

!!#
ð73Þ

The stream function U is defined by Eq. (25). The boundary conditions valid at the extremities of the bar

(Z ¼ �L0: dvz ¼ 0 and dTzr ¼ 0) are satisfied when k ¼ pðp=L0Þ. The two other boundary conditions

(dTrz ¼ 0 and dTzz ¼ 0) valid at the outer radius (R ¼ R0), are written in terms of the stream function:

€UU;ZZ þ
1

�03
_UU;R

R

 
� _UU;RR

!
� 3d0

e U;ZZ ¼ 0 ð74aÞ

2
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r0
e

d0
e

 
� 3m�0

2

_UU;ZZR
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_UU;ZZ
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_UU;R

2�02R3
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_UU;RR

2�02R2
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� 3

4
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q�0
4

U;ZZ þ q 2
V0
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_UU;R

R

 
þ

€UU;R

R�0

!

ð74bÞ

Owing to viscosity, only an elliptic regim exists. The rate of growth g is obtained by combining (29), (73)

and (74) (see Section 2).
This problem has already been investigated by Jeanclaude and Fressengeas (1997), using the method

developed by Fressengeas and Molinari (1994) for the dynamic stretching of sheets. The present approach is

more straightforward. A comparison between Jeanclaude and Fressengeas (1997) and the present approach

is proposed on Fig. 4. The material is representative of an OHFC copper; the behavior is defined by Eq.

(58) with the same properties as in the preceding section. The size of the cylindrical bar is given by L0 ¼ 0:03
m and R0=L0 ¼ 0:01. The velocity at the tip is V0 ¼ 300 m/s. The effect of the strain rate sensitivity is in-

vestigated (see Fig. 4). Three different values of m are tested: m ¼ 0:05, m ¼ 0:1 and m ¼ 0:2. As m becomes

larger, the range where inertia has a significant influence decreases. Note that results in Fig. 4 are identical
to those presented by Jeanclaude and Fressengeas (1997) in Fig. 2.
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5. Results and discussions

We focus on the dynamic extension of a cylindrical bar (analysis developed in Section 2). The material is

rate insensitive and strain hardening, representative of an OHFC copper. The hardening law is described by

the relationship (4). The reference material properties are : r0 ¼ 490 MPa, n ¼ 0:4 and q ¼ 8900 kg/m3. The

reference configuration is: L0 ¼ 0:05 m, R0=L0 ¼ 0:02 and V0 ¼ 33 m/s. The cylindrical bar is initially

prestrained by a given amount �0e ¼ n. The velocity V0 is applied at the extremities Z ¼ �L0. The homo-

geneous effective strain at time t is:

�0e ¼ nþ ln 1

�
þ V0

L0

t
�

ð75Þ

The following calculations are carried out at the time t ¼ 23 ls. A parametric study is performed in order

to figure out the effects of inertia and of material properties on the necking rate N in the case of axisym-

metric loadings.

In the Fig. 2, the comparison between the 2-D dynamic and the dynamic long wavelength 1-D analyses

shows that inertia damps the long wavelength modes. The effect of the mass density on the necking rate N is

visualized in Fig. 5. As q becomes larger, inertia effects increase. As a consequence, for a given longitudinal

wavenumber k, the necking rate N decreases. Inertia acts as a stabilizing factor. Note that the Lagrangian
wavelength of maximum growth is not depending on the mass density. The necking rate of short wave-

lengths (here k > 550) is still zero, whatever the mass density. The results of the Fig. 5 show that inertia is

not responsible for the damping of short wavelengths. From Eqs. (27), (31) and (32), the parameters q and

r0 can be merged into a ratio q=r0. Therefore the trends observed for r0 are the reverse of those previously

observed for q. An increase of r0 leads to a higher necking rate (see Fig. 6), because the relative contri-

bution of inertia is lowered by a larger r0.

To explain the damping of short wavelength perturbations, the radius of the cylindrical bar R0 is varied,

keeping constant all other parameters. The thinner the bar is, the higher is the necking rate and the shorter
is the Lagrangian wavelength of maximum growth (see Fig. 7). The radius has a strong effect on the necking
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Fig. 4. Necking of a cylindrical bar. Effect of the strain rate sensitivity m on the initial relative growth rate G. The results are identical to
Jeanclaude and Fressengeas (1997). The same material (viscoplastic without strain hardening) as in Fig. 3 is adopted. The configuration

is L0 ¼ 0:03 m, R0 ¼ 0:01L0 and V0 ¼ 300 m/s.
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rate of short wavelengths: for large values of R0 short wavelength modes can not grow in the bar. Moreover,
the radius does not have any influence on the necking rate of long wavelengths, since all curves present the

same tangent at the origin.

The effect of the strain hardening is next investigated in Fig. 8. The strain hardening is a stabilizing factor

since the necking rate N decreases as n becomes larger. Moreover, the Lagrangian wavelength of maximum

growth is shifted to the domain of shorter wavelengths. As a consequence, the loss or extinction of short

wavelength perturbations is mainly due to the multidimensional effects occuring in the necking zone which

0 500
0

100

200

Longitudinal wavenumber, k

N
ec

ki
n

g
ra

te
,N

ρ=8900 kg/m3, reference
ρ=12000 kg /m3

ρ=4500 kg/m3

Fig. 5. Necking of a cylindrical bar. Influence of the mass density q on the necking rate N . The material is representative of a rate

insensitive with strain hardening OFHC copper. The reference properties are r0 ¼ 490 MPa, n ¼ 0:4 and q ¼ 8900 kg/m3. The con-

figuration is L0 ¼ 0:05 m, R0 ¼ 0:02L0, V0 ¼ 33 m/s and t ¼ 23 ls.

0 500
0

100

200

Longitudinal wavenumber, k

N
ec

ki
n

g
ra

te
,N

σo=492 MPa, reference
σo=1000 MPa

σo=250 MPa

Fig. 6. Necking of a cylindrical bar. Influence of the stress level r0 on the necking rate N . The same reference for the material (rate

insensitive with strain hardening) and the configuration as in Fig. 5 is considered.
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are interplaying with the stabilizing effects of strain hardening. To the authors� point of view, this refutes the
claim of Shenoy and Freund (1999) that inertia is responsible of both damping of long and short wave-

lengths. Note that for a viscoplastic materials, Fressengeas and Molinari (1994) have concluded that inertia

stabilizes the long wavelengths, while short wavelengths are damped by multiaxial effects.

Finally, the time evolution of the necking rate N is clearly depicted in Fig. 9. The Lagrangian wavelength

of maximum growth evolves with time and is shifted to shorter wavelength. Therefore, a new mode

of perturbation is dominant at each step of the deformation process. Calculations are performed for a
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Fig. 7. Necking of a cylindrical bar. Influence of the radius R0 on the necking rate N . The material is representative of a rate insensitive

with strain hardening OFHC copper (see Fig. 5). The configuration is L0 ¼ 0:05 m, V0 ¼ 33 m/s and t ¼ 23 ls.
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Fig. 8. Necking of a cylindrical bar. Effect of the strain hardening exponent n on the necking rate N . The same reference (rate in-

sensitive material with strain hardening and configuration) as in Fig. 5 is adopted.
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homogeneous effective strain higher than n (tP 0 in Eq. (75)). The Consid�eere criterion (1885) predicts the

onset of instability for the effective strain being equal to n. Our calculations show that, due to inertia, 2-D

effects and strain hardening, the growth rate of perturbations is rather weak just after the Consid�eere cri-

terion is reached, but gradually increases with time.

6. Conclusion

A Lagrangian analysis is proposed to characterize bifurcation or instability in dynamic loadings. The

proposed method is an extension of the work of Hill and Hutchinson (1975) to the dynamic case. Im-
provements are given to the work of Shenoy and Freund (1999).

The necking bifurcation of a uniform cylindrical bar made of a rate insensitive hardening material is

investigated through a linear perturbation analysis. It has been shown that inertia and strain hardening act

as stabilizing factors. More precisely, inertia slows down the growth of long wavelength perturbations while

multidimensional effects conjugated with strain hardening extinct short wavelength perturbations. The

combination of these effects lead to the occurrence of a dominant mode. This dominant perturbation is time

dependent so as at each moment, a different mode has the fastest growing rate.

The proposed method has also been applied to predict the development of instability in configuration
such as rectangular sheet or cylindrical bar when the material is rate sensitive. Results obtained by Fres-

sengeas and Molinari (1994), Jeanclaude and Fressengeas (1997) are accurately retrieved in a straightfor-

ward way.
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Appendix A. Analysis of the growth rate of perturbation for rate insensitive materials under axisymmetric

loadings

A.1. The growth rate is a real number

Consider first the general case where the growth rate g is a complex number. Then the fourth order

algebraic equation (27) can be written in the following form:

l4 þ ðbr þ ibiÞl2 þ cr þ ici ¼ 0 ðA:1Þ

where bi and ci are proportional to the imaginary part of g. In this case, four complex solutions can be
found: l1, �l1, l2 and �l2. Note that when g is real, l1 ¼ l2.

Due to the axisymmetic conditions (24), U is searched in the form:

U ¼ R sinðkZÞfA1e
gtI1ðl1RÞ þ A2I1egtðl2RÞg ðA:2Þ

where A1 and A2 are complex amplitude scalar.

The following notations are adopted:

C1 ¼ A1e
gt C2 ¼ A2e

gt ðA:3Þ

and the Taylor expansion of the Bessel function I1 is introduced:

I1ðRÞ ¼
Xþ1

k¼0

ðR=2Þ1þ2k

k!Cðk þ 2Þ ðA:4Þ

Moreover, the stream function U has to be real for any 06R6R0, thus the condition U ¼ U implies, for

any R:

Xþ1

k¼0

C1ðl1R=2Þ1þ2k � C1ðl1R=2Þ1þ2k þ C2ðl2R=2Þ1þ2k � C2ðl2R=2Þ1þ2k

k!Cðk þ 2Þ ¼ 0 ðA:5Þ

which leads to, for any k:

C1ðl1Þ1þ2k � C1ðl1Þ1þ2k þ C2ðl2Þ1þ2k � C2ðl2Þ1þ2k ¼ 0 ðA:6Þ

where ð	Þ designates the conjugate of the complex number ð	Þ. The only possible solution is

l1 ¼ l2 ðA:7Þ

which means that the fourth order algebraic equation (A.1) must have real coefficients. Therefore g is a real

number.

A.2. Growth rates

It is shown in this section that the growth rate can only have two values. The growth rate g and the radial
wavenumber l are solutions of the system formed by Eq. (27) and one of the following relationships (33),

(35), (37) and (39). It is easily proved that these two relationships define even functions of l and quadratic

functions of g. Therefore, the system can be written in the following form:

g2 þ B1ðlÞg þ C1ðlÞ ¼ 0 g2 þ B2ðlÞg þ C2ðlÞ ¼ 0 ðA:8Þ

B1, B2, C1 and C2 are even functions of the parameter l. By combination, g can be viewed as an even
function of l:
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g ¼ B3ðlÞ ðA:9Þ
As a conclusion, for each wavenumber k, the four complex radial wavenumbers l, solution of Eq. (27), can

be merged into pairs of opposite complex numbers. Therefore, owing to Eq. (A.9), only two real growth

rates are possible for the perturbation associated to the wavenumber k.

Appendix B. Initial conditions for the acceleration

For each longitudinal wavenumber k, two growth rates are found which provide two possible forms for

the perturbation noted Uð1Þ and Uð2Þ. Since a linear stability analysis is performed, any linear combination

of the two modes satisfied the homogeneous boundary conditions and axisymmetry. For each k, the per-

turbation has the following form:

U ¼ A1e
g1tf1ðRÞ½ þ A2e

g2tf2ðRÞ
 sin kZ ðB:1Þ

where A1 and A2 are real constants.
It must be checked that at the time tþ0 , the perturbed acceleration derived from the stream function U is

equal to zero. By time derivation of the relationship (19), the acceleration components are given by:

cr ¼ � 1

2

V0
L0

�0
3=2 U;Z

R
þ

ffiffiffi
�0

p

R
_UU;Z ðB:2aÞ

cz ¼ � V0
L0

U;R

R
� 1

R�0
_UU;R ðB:2bÞ

It is easily seen that the two components of the acceleration vector are not equal to zero for any k.
Nevertheless, for large values of k, it is clear that from Eq. (27) the 4 solutions l are almost not depending

on g. As a consequence, the two functions f1ðRÞ and f2ðRÞ are identical. Thus by substitution of (B.1) into

(B.2), it follows:

cr ¼ k A1

ffiffiffi
�0

p
g1

��
� 1

2

V0
L0

�0
3=2

�
þ A2

ffiffiffi
�0

p
g2

�
� 1

2

V0
L0

�0
3=2

��
cosðkZÞf1ðRÞ ðB:3aÞ

cz ¼ � A1

V0
L0

��
þ g1

�0

�
þ A2

V0
L0

�
þ g2

�0

��
sinðkZÞf1;RðRÞ ðB:3bÞ

The two solutions g1 and g2 are the roots of the quadratic equation obtained from (27):

q �0k2
�

� l2

�02

�
g2 � q

V0
L0

2
l2

�0

�
þ �0

2

k2
�

g þ l

�
� r0

e

2

�
l4

�03
þ ðl � 3l�Þk2l2 þ k4 l

�
þ r0

e

2

�
�0

3 ¼ 0 ðB:4Þ

From the boundary condition (23a) and from (25), the modulus of k is of the same order as the modulus

of l. Thus from (B.4), the sum g1 þ g2 is scaled by V0=L0 and the product g1g2 by the ratio rek2=q. As seen in
Fig. 2, the maximum growth rate is positive and large compared to V0=L0. Then, the other possible growth

rate (which is real) has to be negative, and of the same order of magnitude; then the other solution is also

large compared to V0=L0. As a consequence, the relationships (B.3) can be simplified into:

cr ¼ k
ffiffiffi
�0

p
ðA1g1 þ A2g2Þ cosðkZÞf1ðRÞ ðB:5aÞ

cz ¼ � 1

�0
ðA1g1 þ A2g2Þ sinðkZÞf1;RðRÞ ðB:5bÞ
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and the initial condition c ¼ 0 is fulfilled when

A1g1 þ A2g2 ¼ 0 ðB:6Þ
In our analysis, when the amplitude factors A1 and A2 are linked by Eq. (B.6), an initial velocity per-

turbation (of the form (B.1)) can be added to the background solution with no initial acceleration. It has

been checked from the numerical simulations, that this condition is valid for longitudinal modes in the

range where the growth rate is maximum, which is the case of interest in our analysis.
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