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Abstract

Dynamic bifurcation and flow instabilities of cylindrical bars, made of an incompressible strain hardening plastic
material, are investigated. A Lagrangian linear perturbation analysis is performed to obtain a fourth order partial
differential equation which governs the evolution of the perturbation. The analysis shows that inertia slows down the
growth of long wavelengths while bidimensional effects conjugated to strain hardening extinct short wavelengths. The
present approach is applied successfully to the analysis of bifurcation and instabilities in (i) a rectangular block during
plane strain extension, (ii) a circular bar during uniaxial extension. New results are obtained in the case of rate inde-
pendent materials and a synthetical point of view is obtained for rate dependent behaviors.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In rapid stretching, structures can develop a multiple necking pattern which leads to the fracture in
several fragments. Experimental evidence of this phenomenon has been reported by several authors.
Niordson (1965) has developed an experimental device in which an intense electromagnetic field is used to
expand thin rings at high strain rate. In the loaded specimen, many necks are observed along the cir-
cumference. Grady and Benson (1983) performed dynamic expansion of aluminium and copper rings using
the former technique. The authors enlight the enhanced ductility of metals in dynamic conditions compared
to quasi-static conditions. They observed also the fragmentation of rings at high velocity testings. They
have noted that the number of fragments increases with the loading velocity. More recently, Altynova et al.
(1996) have also performed expansion of rings (Al, T6AL, Cu alloys) by electromagnetic means. Trends
observed by Grady and Benson (1983) are retrieved by these authors. The fragmentation is also observed in
axisymmetric jet formed by the collapse of a linear shaped liner under explosive loading. During the flight,
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the jet is stretched at high strain rate and fragments are sometimes observed (see Karpp and Simon, 1976;
Chou et al., 1977).

Many contributions have been devoted to the analysis of bifurcation and instabilities occuring during
plastic loading. Most of them were concerned by quasi-static situations. Hill and Hutchinson (1975) have
developed a quasi-static bifurcation analysis for a rectangular plate subjected to plane strain tension. The
material has a rate independent behavior. Depending on the deformation state, the bifurcation can occur in
the elliptic, parabolic or hyperbolic regimes. Young (1976) carried out a similar analysis in plane strain
compression. Benallal and Tvergaard (1995) examined the role of non local effects on bifurcation in the
plane strain tension and compression tests.

Multiple necking during high strain rate loadings is the result of inertia effects. Therefore the above
mentioned analyses have to be extended to account for inertia forces. Sorensen and Freund (1998) have
extended the approach of Hill and Hutchinson (1975) in dynamic conditions. Acceleration term in the
momentum balance is taken into account. But the hydrostatic pressure contribution resulting from lateral
inertia is ignored so that this dynamic analysis is valid for large ratio of length to width of the block. The
material is rate independent and the incompressibility assumption is adopted. The elliptic, hyperbolic and
parabolic regimes are identical to those established by Hill and Hutchinson (1975). Owing to the inertia
term in the momentum balance, the rate of growth of the bifurcation mode is evaluated. It is found that
long wavelength modes are suppressed by inertia. Shenoy and Freund (1999) improved the previous work
by taking into account of the hydrostatic pressure contribution due to the lateral inertia. In this analysis,
the material behavior is rate independent with an isotropic hardening. By considering the rate of growth of
perturbations, it is observed that a particular wavelength is selected which characterizes the size of the
fragments. The authors claim that inertia is responsible for this phenomenon since they considered that
inertia suppress both short and long wavelength mode of bifurcation. In addition the authors have en-
lightened the fact that the number of necks is not influenced by the level of strain hardening.

Ring experiments have also been modelled by finite element calculations. An interesting work has been
performed by Han and Tvergaard (1995). The material is a rate independent elastic—plastic solid. A small
imperfection triggers the onset of necking. Nevertheless, due to wave propagation, the number of necks can
exceed the number of initial thin points introduced by the imperfection. The authors have shown that the
neck spacing is dependent on the loading and on the aspect ratio of the cross section. On the contrary, the
magnitude of the initial defect and of the strain hardening coefficient does not influence the necking pattern.

The previous works concern rate-independent material. For rate dependent material, the problem of a
rectangular block subjected to tension has been analysed by Hutchinson et al. (1978). Using a linear
perturbation analysis, the authors have concluded that the strain rate sensitivity effects damp short
wavelengths. The effect of strain rate sensitivity has been already mentioned by Hutchinson and Neale
(1977) in the long wavelength analysis of neck formation in a viscoplastic bar. To model fragmentation in
viscoplastic solids, Fressengeas and Molinari (1994) have extended the previous work by adding inertial
effects. It was demonstrated that inertia slows down the growth of long wavelengths. This role in combi-
nation with the stabilizing aspects of viscosity and of bidimensional effects on short wavelengths leads to the
selection of an intermediate wavelength (the fastest growing mode). Note that the fastest growing mode is
time dependent. The role of inertia was already mentioned by Fressengeas and Molinari (1985). An ex-
tension of the theory proposed by Fressengeas and Molinari (1994) has been carried out by Jeanclaude and
Fressengeas (1997). They analysed the fragmentation of a rapidly stretching bar in an axisymmetric
loading. This bidimensional dynamic analysis has provided similar results (selection of an intermediate
wavelength due to inertia and strain rate sensitivity).

In this paper, a theoretical analysis of dynamic bifurcation of a cylindrical bar is performed. The material
is incompressible rate insensitive with strain hardening. Owing to a linear perturbation analysis, the rate of
growth of the perturbation is evaluated. Various stabilizing effects delay the growth of disturbances. Inertia
slows down the long wavelengths whereas bidimensional effects damp the short wavelengths.



S. Mercier, A. Molinari | International Journal of Solids and Structures 40 (2003) 1995-2016 1997

The paper is organized as follows. In Section 2, the linear stability analysis is developed for a cylindrical
bar and a rate insensitive hardening material. In Section 3, an extension of the contribution of Shenoy and
Freund (1999) for the dynamic bifurcation of a rectangular block (rate insensitive materials) is proposed in
a Lagrangian frame. Next, the dynamic instability of cylindrical bars and rectangular sheets for rate sen-
sitive materials is presented in Section 4. Comparisons are carried out with published results (Fressengeas
and Molinari, 1994; Jeanclaude and Fressengeas, 1997). Finally, in Section 5, new results are proposed for a
cylindrical bar made of a rate insensitive material with strain hardening.

2. Rate insensitive material under axisymmetric loading

Since an axisymmetric problem is considered here, the cylindrical coordinate system is adopted, asso-
ciated to the frame (e,, ey, e,). The Lagrangian coordinates of a material point are noted (R, 0, Z). The
cylinder occupies in the undeformed state the region —Ly < Z < Ly and 0 < R < Ry, where 2L, is the initial
length of the bar, R, is the initial radius. The body is subjected to uniform velocity +7V;e, applied at the
extremities Z = +L, (see Fig. 1). In the deformed state at current time ¢z, the position of a particle is given by

r=r(R,Z,t) z=z(R,Z,1) (1)
The material is assumed incompressible, rate independent with strain hardening. The behavior is defined

by the constitutive law developed by Storen and Rice (1975). In axisymmetric loading, the Jaumann rate &
of the Cauchy stress tensor o is:

6-1'r = (,u* + ,u)Drr - (:u - ,U*)D()() _p (Za)
6-00 - (,I.L* + ,U)D()O - (,u - ,U*)Drr _P (2b)
&ZZ = 2,u'*Dzz 7p 6',/ = 2'“‘DU for i 3& J (20)
D is the strain rate tensor. u* and u are the moduli defined by:
1 do, 1 o,
* = — = - — 3
K 3 Oe. K 3 e 3)

where g, = (3/2s : s)"/? is the effective stress and s is the deviator of the Cauchy stress tensor. The effective
strain is defined by e, = [ D.d¢, with D, = (2/3D : D)l/ ? being the effective strain rate. Furthermore, the
hardening behavior is specified by the Hollomon’s law (1945):

Oe = 0g€l (4)

with » the strain hardening exponent, o, a scaling factor.

free surfac
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_Vo\ 0 \/Vo e
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Fig. 1. View of the cylindrical bar, of initial length 2L, and of initial radius R,. Velocities £/} are applied at the extremities Z = +L,.
The lateral surface R = R, is traction free.
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The boundary conditions of the problem are, respectively at the extremities Z = +L, and at the lateral
surface R = Ry:

T,.(R,Z=+Ly,t) =0 Tp(R,Z==%Lo,t) =0 v.(R,Z==xLy,t) ==V (5a)

T..(Ro,Z,t) =0 T,9(Ro, Z,t) =0 T-(Roy,Z,t) =0 (5b)
where T is the nominal stress tensor related to the Cauchy stress tensor ¢ by:

T=F'¢ (6)

with F being the gradient of the deformation. The incompressibility condition (det F = 1) has been used.
The traction vector t, acting at the point across the surface whose outward normal is n, has been defined as
in Malvern’s book (1969) : t =n - T (#; = n;T};). In the following, all mechanical quantities and operators are
defined as in Malvern’s book (1969).

The homogeneous deformation is given by Jeanclaude and Fressengeas (1997):

z=27/¢ US:EZ (7a)
Ly
1
r=RVe ' =—~ ER(G')W (7b)
2 Ly
with
1
) 8
T+ (/L) 8)
The corresponding Cauchy stress is:
-pt 0 0
o] =1 0 —p' 0 ©)

0 0 ol —p' |y
p' is the inertial pressure due to lateral deformation and ¢ the background effective stress. By verifying the
equation of motion and the boundary conditions, it is straightforward to obtain p':

1 3 4 ? N3/ p2 2
p =<7 ) p)R—R) (10)
8\ Ly
with p the mass density.
In the following, the linear stability of the homogeneous deformation is investigated so as to determine
the wavelength of the perturbation associated to the fastest growth rate.

2.1. Linear perturbation analysis

The analysis of the linear stability of the homogeneous solution defined by the relationships (7)—(10) is
performed in a Lagrangian formulation. A perturbation in velocity dv, respecting the axisymmetry of the
problem, is added to the background field at a given time #y, without any initial disturbance of the ac-
celeration. Then

v=2"4dv y=19"40y (11)
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with dv(t)) = 0, dv(ty) # 0 and dy(#) = dy(¢;) = 0. The validity of this assumption will be discussed in
Section 2.2.4. Since the material is rate independent and the acceleration is not modified at time 7, the
background nominal stress tensor T, satisfies the momentum equation at time #, and #;:

Div T = pv (12)

where (-) is the material time derivative. Note that a perturbation in velocity and in acceleration added to
the homogeneous background solution would imply a perturbation of the nominal stress tensor to respect
the momentum equation (12).

The initial evolution of the velocity disturbance is sought using an incremental formulation. The rate of
the momentum equation is:

Div T = pv (13)

where Div is the Lagrangian divergence operator. The velocity gradient L = F - F~! can be written at time 7
and ¢; as:

L o
Je OR ‘oz
v,
[L]R(?Z = 0 \/?R 0 (14)
La o
Je OR ‘oz

In calculating (14), we have used the fact that F(z]) = F(t) = F, (background solution) since a pertur-
bation in velocity (and not in position) is considered.

Using the incompressibility condition det F = 1, the rate of the nominal stress, obtained by time deri-
vation of Eq. (6), is related to the Jaumann rate of the Cauchy stress &, for ¢ <7

T=F,) 6-D 6)—0) Q) (15)

with Q the spin tensor. a; is the background stress tensor since the acceleration is not perturbed at time #; .
According to relationships (2), (9), (14) and (15), the non zero components of T are:

o UrR Uy P

T;"r — * |l LA R 16
W Hp+p)—F—(u—n)—p Nz (16a)

. 02 I ; Gg Uz R

Lo={p=F+p |Vevz+ (n-5 )= (16b)

T * UF,R * 1 Uy p

T = (= ) R O _ 16

o = —(u u)€,+(u +ﬂ+p)€,R e (16c¢)

. O'O 2 O'O I

1., = ,u—i—je € v+ ,u—i—l—p Ve g (16d)

T.=Qu —a"+p)e v, —ép (16e)

where the comma stands for the partial derivative, as for instance, ( ), = 0( )/0R. T must satisfy the
momentum equation (13). Cross-differentiating the obtained relationships so as to eliminate the rate of
pressure p = —(1/3)tr (¢) and using the incompressibility condition

v, v,
trD=0 or R +

Ve VeR

+€cv,z=0, (17)
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a single partial differential equation is found for ¢ <#;:

1 % 02 UyrZ Ur,Z 0-2 /% * O-(e) /
o W+ 3 (Ur,RRZ + =R R ) +lu+ 3 )€ Urzzz +lu—=2u + 3 )€ larzz
a’\ 1 v, v, vy,
- <#76>€7(UZ,RRR Jr—gR* Rf) IRR\/i P(U:Z\/_ > (18)

It is noteworthly that the background velocity field (7) satisfies both incompressibility (17) and Eq. (18).
Considering the expressions (17) and (18) at time ¢, and #; and the linear dependence with respect to v, the
perturbation Jv at time 7] is found to satisfy Egs. (17) and (18).

A stream function @(R,Z, ) is introduced such that the perturbed velocity is:

Ve 0 1 09
5Ur— R & 5027_R_€/§ (l9)

It follows that the incompressibility condition (17) is automatically satisfied. By substitution of Eq. (19) into
Eq. (18), a fourth order partial differential equation governing the evolution of @ is obtained:

Drzz  Prrzz ol » P77
-3 * > _ T e »
(n—3u )( % ) Tlets ) =

aA\1/3 3 2 1
— (ﬂ - 7) w (FQR _F¢,RR +ﬁ¢,RRR —EQRRRR)

,éZZ 1 éR dj.RR VO 2 éZZ 2 épR (.DRR
— e | 8 o _ . il PR R ol 20

The perturbed boundary conditions, derived from the relationships (5) are

ov.(R, %Ly, t) =0, 6T, (R,+Lo,t) =0 (21a)
5Trr(RO;Zv t) = 07 5Trz(R07Za t) =0 (21b)

Using the definition of the velocity in terms of the stream function (19) and Eq. (16), the following con-
ditions at Z = £L, are obtained:

0P \ €@ A\ [ Pr P
=0 Ze )= L_Ze )Y 22
R~ (”+2) R +(“+p 2><R2 R) 22)

and for R = Ry:

,3
€D, +

(i

P _ @RR> ~0 (23a)

P
R

2
i( @R_i_%_@,mk) _ <3,u*—6—2>6/¢’RZZ+2M6/%—§(&> o' ® 5,

) R R R 2

2
Vo ®r i\
(L_T —>_0 (23b)
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2.2. Axisymmetric mode

The purpose of this work is to evaluate the possibility of axisymmetric multiple necking in dynamic
loading. Additional conditions along the centreline are necessary to respect axisymmetry:

00,(0,Z,8) =0 67,.(0,Z,¢) =0 (24)
Therefore, to satisfy (24) perturbation modes are searched of the form:
®(R,Z,t) = ARe" sin(kZ)I,(IR) (25)

where £ and [ are respectively the Lagrangian longitudinal and radial wavenumbers; 5 is the growth rate of
the perturbation, which is a real number (see Appendix A). In the following, the frozen coefficient theory is
adopted which implies that the parameters £ and / are considered as time independent. The mode is stable
(resp. unstable) when 1 < 0 (resp. n > 0). I, represents the modified Bessel function of the first order. 4 is an
amplitude factor. Note that the boundary conditions (22) are satisfied as soon as

kLo = pn (26)

where p is an integer which determines the number of initial thin points induced by the perturbation.
The substitution of (25) into (20) leads to a fourth order algebraic equation for the radial wavenumber /:

O\ 74 i Vo n a\ » W e
_ e\ -3 *k2_ I 901 12 k4 “e / /k2 2 _/k2 =0 27
(u 2>€,3+<(u WK = Loe,) R\t )€ pekir —p ek (27)

As discussed by Hill and Hutchinson (1975), three different regimes exist: the elliptic domain where no roots
are reals, the parabolic domain with two real roots and the hyperbolic one with four real roots. These
regimes are analysed in the following.

2.2.1. Elliptic domain
2.2.1.1. Four complex roots. The four complex roots of Eq. (27) are noted

(0, k),  E5(nk) with 5 =1, (28)

where (-) designates the conjugate of the complex number (-).
The perturbed stream function @ has to be real; therefore ¢ has the form:

® = Re" sin(kZ){AL (R) + AL, (I;R)} (29)

The perturbated stream function must satisfy the boundary conditions (23). This provides two relation-
ships:

ASAXI (1)} =0 RAX(E5)} = 0 (30)

The notation #.{-} represents the real part of the complex number {-}. The expression X;(/), obtained from
(23a), has the following form:

X)) = (kzc' + <€l/)2>11(lR0) (31)



2002 S. Mercier, A. Molinari | International Journal of Solids and Structures 40 (2003) 1995-2016

and X5(/), deduced from (23b), is:
a

-5 I (IR L(IR 0 k>
X)) =-t"2 131;(1R0)+M —2ﬂe'k2M+ 3 — 22 )¢ S (1 (IRo) + RolI! (IRo))
€ R() R() 2 R()

3\ 2V 2
+2( 2 ) P R (IR) + p | (L (IRo) + RolI} (IRy)) +17—,([1(1R0) + Roll}(IRy))
4\ Ly LoRy Rye

(32)
I} represents the derivative of the Bessel function /;. The two conditions (30) are valid for any amplitude
factor 4 and merge into an unique relationship after elimination of the complex number 4:

T X (I)XA (1)} = 0 (33)

where .#,{-} designates the imaginary part of the complex number {-}. For a given wavenumber %, the
growth rate of the perturbation # is solution of Eq. (33).

2.2.1.2. Four purely imaginary roots. The four roots are supposed to be purely imaginary and are noted
+ili (n, k), %ili(n, k), where i is the complex number defined by i* = —1. In this regime, the necessary form
for the perturbed stream function @ is:

@ = Re" sin(kZ)[iB\1; (il}R) + iB,1; (il,R)] (34)

B, and B, are real amplitude factors. As before, from the boundary conditions (23) an equation for the rate
of growth 7 is found:

X, (i0) X (i) — X, (i) X, (i) =0 (35)

2.2.2. Parabolic domain
Two roots are real, noted +/7 (i, k); the two others are purely imaginary, noted +i/5(», k). The necessary
form for the stream function @ is

@ = Re" sin(kZ)[B\ I, (I{R) + 1B, I, (i15R)] (36)
By and B, are still real amplitude factors. Since Eq. (23) must be satisfied for any B, and B», the equation
governing the rate of growth of the perturbation # is given by:

X)X (18) = X (15)X (1) =0 (37)

2.2.3. Hyperbolic domain
The four roots of Eq. (27) are real, noted £/"(n, k), £15(n, k). The stream function @ has the following
form:

@ = Re" sin(kZ)[B\1; (I'R) + BoI,(I5R)] (38)
Owing to the boundary conditions (23), # is solution of:

XX (B) — X (B)X (1) =0 (39)

2.2.4. Discussions

The regime in which bifurcation occurs, depends on the size of the bar (Lo, Ry), on the material behavior
and on the loading history. It is shown in Appendix A that for each longitudinal wavenumber &, two
growth rates #n, and 7, can be found. Thus two possible modes for the perturbation can exist:
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o1 = &M sin(kZ) f11 2)(R) (40)

Note that all boundary conditions (22) and (23) are satisfied by the two stream functions @', The last
condition to fulfill is the zero initial value of the perturbed acceleration vector. In our approach, this
condition cannot be satisfied rigorously, because the radial dependency of the stream function is expanded
with only one trial function. If an infinite number of appropriate trial functions (/,,n > 1) was used, the
condition dy = 0 would be exactly satisfied. In the present analysis, the authors have kept only the fun-
damental term in the expansion serie. General treatments might be done as in heat transfer problem; see
Ozisik (1968). However, it is seen in Appendix B, by linear combination of the two possible modes @' and
@7, that y = 0 at time #; can be approached with good accuracy for bifurcation modes with large growth
rate. In Section 5, only the most unstable mode of perturbation is presented.

Note that the proposed linear stability analysis evaluates the instantaneous growth rate of a perturbation
associated to a wavenumber k. Since the governing equations for the stream function @ are time dependent,
so is the growth rate . Then a perturbation can be unstable at a given time and stable at a later time (or the
contrary). An instantaneous positive growth rate for the perturbation & at a given time is not a proof of the
long term instability of this perturbation. Nevertheless, it will be seen in Section 5, that such approach can
provide useful informations concerning the dynamic necking of cylindrical bars.

3. Rate insensitive material under plane strain loading

The bifurcation analysis of a rectangular plate, in dynamic plane strain extension, has been studied by
Shenoy and Freund (1999) when the material has a rate insensitive behavior. These authors did not perform
a full Lagrangian analysis, since, at each step of the deformation, the current configuration is taken as the
reference. In this section, a full Lagrangian solution to this problem is proposed and compared with results
of Shenoy and Freund (1999). A cartesian coordinate system is adopted, associated to the frame (ey, ey, €,).
The Lagrangian coordinates of a particle are X|,X,. The body occupies the region —L; <X; <L; and
—L, <X, <L, and is stretched with the velocity +Vye, at X; = +L, under plane strain conditions. The
constitutive law is given by Storen and Rice (1975):

611 =2u'Dy—p 6p=2u"Dy—p 61n=2uDyp (41)

w and u* are defined by Eq. (3). The hardening is governed by (4).
The homogeneous solution is given by Fressengeas and Molinari (1994):

X

X1 = ? X2 :X2€l with 6/ = 1 +L’/_(:t (42)
The homogeneous Cauchy stress is
0 ) 178% )
= |7 o7 O] i () B-xpe 43)

Due to the plane strain condition, ¢° is related to the background effective stress ¢” by ¢° = 26%/ V3.

The homogeneous deformation is perturbed as in Section 2. A perturbation in velocity is added at time #,,
without any initial change in the acceleration field. In the following, the velocity field v is the sum of the
homogeneous field and of a perturbation depending on (Xj, X3). As a consequence, the velocity gradient L,
valid at time ¢, and ¢ is defined as:
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61)1 1 61)]

_ GXI € 6X2
(L] = 61)2 l% (44)

6X1 € an

The rate of the nominal stress tensor 7 is expressed in terms of the velocity field with use of Eqgs. (15), (41)
and (44). p is eliminated by cross differentiation of the momentum equation:

Ty = pi; (45)

where the notation (-) ; stands for the partial derivative d(-)/0X;. After some algebraic development similar
to those of Section 2, and with use of the incompressibility condltlon

,le 1 61)2
€ —1+ =
6X1 e 6X2

a third order partial differential equation is obtained:

a®\ v v a° v ]
(,u—7) 16',2322—1-(2/1* _M)(E/UI.IIZ - 2;,22> - <M+ 3 )6 2,111 —ﬁA: P(%_EUN) (47)

The last two relationships are satisfied by both the homogeneous velocity and the perturbed velocity Jv.
The following analysis is similar to that of Section 2. To satisfy (46), we introduce a perturbed stream
function @ such that:

-0 (46)

501 = _l/¢’2 51,72 = 6/43_1 (48)
€ )

The relationship (47), describing the evolution of the perturbation, is written in terms of &:

'\ 1 . "\ 4
= 67‘1’,2222-1-2(2# — WP nxn + P“"? € P

1 2V 20 5
P<€ Dy +— 7 D5, +L 0/(15,22—L—06’3‘1"ﬁ11> (49)
1

Note that Shenoy and Freund (1999) have analysed the same problem, assuming that the current con-
figuration is the reference one. When adopting this assumption (¢/ = 1) in our formulation, the relationship
(27) of Shenoy and Freund (1999) can not be retrieved. The difference is due to the rate of acceleration term
obtained by time derivation of Eq. (48). In the proposed analysis, the time derivative of the term € is
accounted for and modifies the expression (49) by the additional terms

20 - 2 5
— ——€ @
Lie 22 L € P
The perturbed boundary conditions:
501(:|:L17X2, f) =0 5T12(:|:L1,X2, t) =0 (503)
0T (X1, %Ly, t) =0 0D (Xy, £L,,t) =0, (50b)

can be expressed in terms of @. At X; = +L;, we have

; a’\ 1 P a®
D=0 —|(u+p —? §¢,22+€ ,u—&—j (15711:0 (51)
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and at the extremities X, = +L,:

e @, =0 (52a)

a° @\ 1 s VEL W I.
(?+M—4'u*)6/(p’112 - (M_E)?djzzz —ine/‘ (222(p_’11 = _p<2L_(1)¢’2+ @Yz) (52b)

1 ¢
Only symmetric modes of bifurcation are considered in the current analysis. Additional relationships
need to be checked to satisfy the symmetry:
00,(X1,0,1) =0 T (X1,0,7) =0 (53)
As in Fressengeas and Molinari (1994), the perturbed stream function @ is chosen of the following form:
® = Ae" sin(kX;) exp(ile” X5) (54)

The substitution of (54) into (49) provides a fourth order algebraic equation for the transverse wavenumber
[

0 2 0
( —"2>z4 n ((4u* 20k pZ7+ szK‘l) Z>12 Y (u +”2> +§k2 2 zpez)1 Bn=0  (55)

As in the axisymmetric analysis, three different regimes (elliptic, parabolic and hyperbolic) can be in-
vestigated. The rate of growth of the perturbation # is found as the solution of a non linear equation re-
sulting from the boundary conditions (52a) and (52b) and from the condition of symmetry (53). The details
are not provided in the present paper (similar to Section 2). Note that, as in Appendix B, it can be shown
that the initial condition of zero perturbed acceleration can be approached with good accuracy.

To capture the bifurcation rate #, Shenoy and Freund (1999) introduced the “necking rate” index N as
the ratio of the rate of growth 5 to the background uniform strain rate ¥y/L;:

)

Note that the bifurcation exists if the necking rate N is large compared to unity.

Full lagrangian analysis
- — — - Shenoy and Freund analysis
e - Longwavelength analysis

/ -~

N @ ®
o =] S
T T T

Necking rate, N

N
o
T

200 300 200 560

Longitudinal wavenumber, k
Fig. 2. Necking of a stretched plate. Evolution of the necking rate as a function of the longitudinal wavenumber k. The results are
compared to those of Shenoy and Freund (1999) and to the long wavelength analysis. The material, rate insensitive with strain

hardening, is representative of an OHFC copper: gy = 490 MPa, n = 0.4 p = 8900 kg/m?, e, = (2/v/3)n(1 4 0.0026). The configuration
is 2L; = 100 mm, 2L, = 2 mm and ¥, = £33 m/s.
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For illustration, as in Shenoy and Freund (1999), the material considered is an OFHC copper whose
properties have been reported by Altynova et al. (1996) (oo = 490 MPa, n = 0.4, p = 8900 kg/m?). The
geometry of the plate is 2Z; = 100 mm and 2L, = 2 mm (aspect ratio L,/L; = 0.01) in order to be consistent
with the size of rings used by Altynova et al. (1996). The current configuration is taken as reference (¢’ = 1).
The velocity applied at the extremities of the plate is ¥, = £33 m/s. The homogeneous effective strain in the
plate is €0 = (2/v/3)n(1 4 0.0026). The present analysis is compared to results of Shenoy and Freund (1999,
Fig. 2) and of the dynamic long wavelength analysis (see formula 3—11, Fressengeas and Molinari, 1985). It
is observed on Fig. 2 that long wavelength perturbations are slowed down by inertia. The necking rate N is
close to zero when the longitudinal wavenumber £ is small. In Section 5, it is seen that the two dimensional
effects are mostly responsible for the damping of short wavelength modes. As a consequence of the in-
terplay between the stabilizing role of inertia and of 2D effects, a wavelength of maximum growth rate is
selected. Compared to the analysis of Shenoy and Freund (1999), the necking rate N predicted by our
approach is lower, due to additional terms in the rate of acceleration which enhance the influence of inertia.

4. Instability analysis for rate sensitive material

The aim of this section is to analyse the stability of the deformation of viscoplastic non-hardening
materials for two loading conditions: plane strain and axisymmetric extensions. At a given time f#y, a time
dependent perturbation is added to the position of the particle. This implies a disturbance in the velocity, in
the acceleration and also in the stress tensor (since the material is rate dependent). In the following, the
background position, velocity, Cauchy stress and nominal stress are noted x, v, ¢ and T; the corresponding
perturbed quantities are designated as dx, dv, do and oT.

The viscoplastic behavior is described by the J, flow theory
— (57)

S,’j =

The effective Cauchy stress o, is linked to the effective strain rate d, by a powerlaw:
Oe = O-Odén (58)

where m is the strain rate sensitivity.
4.1. Plane strain problem

The background solution is defined by Egs. (42) and (43). The perturbation of this solution is performed
within a Lagrangian frame. The disturbance of the nominal stress is given by:

0T = (F+0F) "' - (64+06)—F ' .6 (59)
whose components are:
. 20° 1 !
5T11 = 6, <5S11 — (Sp — € (\/ge —pl> 5)6171) 5T22 = g <5S22 — 5p +[;5X2}2> (603)
1 ,( 26° . , !
5T21 = Z <5S21 — € <7§ _p1> bX2,1> 5T12 = € <5S12 +%5X1,2> (60b)

In plane strain conditions, the components of the perturbed Cauchy stress deviatoric tensor ds are obtained
from (57):
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2m ¢° 2 ¢°
55‘11 = T d—§5D11 5S22 = —5S11 5S12 = 5 d—§5D12 (61)
The incompressibility condition (det F = 1) expressed in terms of the perturbation gives:
00x; 1 0dx,
/ —22 62
€ aXl +€/ 6X2 ( )

To satisfy (62), a stream function @ is introduced such that:
1
5)(1 = ——/¢'2 5)(2 = 6/‘?1 (63)
€

After elimination of the pressure perturbation dp in the perturbed momentum equation (DivéT = pév), we
obtain by using the incompressibility condition (62) and the definition of the stream function (63), a fourth
order partial differential equation for @:

ol 57 P + 6/41’,1111 —2(1 =2m)®@ 1 | =p 6'2¢,11 + =Py + 22 =D — E,3‘1?,11 (64)
3d) \ ¢ ¢ L\ €

The boundary conditions are dv; = 0 and 671, = 0 for X; = +Ly, and 675 =0, 6T = 0 for X; = +L,. The
last two conditions are written in terms of &:

0'2 2 s 1. 2 20

ol€Pn——Pn)——F4€c0, P =0 (65a)
3d° € V3

4me'02 . 62 L <'Pﬁ222 Vo 2 E Vo . 1.

W¢,112_ﬁ 6‘15,112—7 +2p L_l € Ldy=p 2L_1(p’2+§(p’2 (65b)

Only symmetric instability modes are considered in the current analysis. So, additional conditions along
the centreline need to be checked:

502()(1,0,1) =0 (STzl(Xl,O, l) =0 (66)

Finally, the stream function @ is taken as in (54). Details are not presented here (similar as in Section 2).
The growth rate of the perturbation #, for a given longitudinal wavenumber £, is obtained by combining
(54), (64), (65) and (66). Since the material behavior is viscoplastic, it can be noted that instability occurs in
the elliptic domain (see Fressengeas and Molinari, 1994).

To capture the evolution of the perturbation relative to the homogeneous background strain rate, a
growth rate index G is defined (see Fressengeas and Molinari, 1994):

mnL,
G= 67
7 (67)
A dimensionless number / characterizing inertia effects relative to the viscoplastic effects is defined as:
V2
I= iad (68)

m+1 m
(%) (7)
This problem has already been investigated by Fressengeas and Molinari (1994), using a different scheme.
The main difference is the definition of the stream function using the incompressibility condition (detF = 1)
rather than the other condition (detF = 0). Therefore, in our approach, @ is linked to the position.

In Fressengeas and Molinari (1994), @ is linked to the velocity. Moreover, in their approach, the rate
of growth of the perturbation is solution of an ordinary differential equation. For illustration, the
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Fig. 3. Necking of a stretched plate. Effect of the dimensionless number 7 (/ = 4 or I = 0.4) on the initial growth rate G. The results are
compared to the long wavelength dynamic and to the quasi-static analyses. The present approach provides results identical to Fres-
sengeas and Molinari (1994). The material (an OFHC copper) is viscoplastic without strain hardening: o = 1.1010% SI, m = 0.05 and
p = 8900 kg/m?. The configuration adopted is L; = 0.03 m and L, = 0.01L,.

material behavior (representative of an OHFC copper) is defined by Eq. (58) with the following charac-
teristics (o9 = 1.110% SI, m = 0.05, p = 8900 kg/m’ (see Fressengeas and Molinari, 1994). The size of
the plate is given by L; = 0.03 m and L,/L; = 0.01. The results are presented in Fig. 3 for two values of /
(I =4 and I = 0.4). The results of the dynamic long wavelength (see formula 3-11, Fressengeas and
Molinari, 1985) and of the quasi-static analyses are superimposed. The results provided by the present
analysis are identical to those obtained previously by Fressengeas and Molinari (1994, Fig. 1). As noted by
these authors, inertia slows down the long wavelengths. The short wavelengths are damped by the biaxial
effects; the quasi-static and the dynamic approaches provide the same results for short wavelengths. The
growth rate G is maximum for a finite wavelength, due to the interplay between inertia and viscous biaxial
effects.

4.2. Axisymmetric problem

The homogeneous solution is defined by relationships (7)—(10). The perturbation of the nominal stress,
given by Eq. (59), is expressed as:

1
oT,, = % (5s,, —op+ %5%3) oT,, = \}g(ésrz - e'(ag —p")ox, 2 (69a)
1 P 5x,)

0Ty = ——=| dsgg — Op + 69b

00 \/Z( S00 p \/Z R ( )
I
oT, = ¢ (5s,z n p—5x2<R> ST = € (05 — Op — € (6° — ph)ox.z) (69¢)
Ve ’

In axisymmetric loading, the perturbed deviatoric stress os is defined by:

2 o9 —1 260 1
os, =2 % (51),,. - mTéDZZ> Ssgp =2 %¢ <5D99 - mTéDzz) (70a)
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0

2 20
s dsy==220D, i#) (70b)

05= =3 d0 3 d0

The incompressibility condition (det F = 1)

0x.gp  Ox,
- + €¢'ox., 71
7o VR 7= (71)
leads to the introduction of a stream function ¢ such that the perturbed position is:
Ve 0@ 1 29
%=z T Reak (72)

The pressure Jp is eliminated by cross differentiation in the perturbed momentum equation. Using the
incompressibility condition, a fourth order partial differential equation is obtained which governs the
evolution of @:

o0 . & Py 1 ¢ @ ] :
Tafg ((3m -1 (QZZRR - ;ZR> + D gy +67 < -3 Rf 3ﬂ -2 ;RR + ¢,RRRR>>

. 1 (@ y v . 2 (@ .
=p [6/4’,22 - 67 (TR - QRR) - L_Z (6/24’,22 + o (71? - qj,RR) )1 (73)

The stream function @ is defined by Eq. (25). The boundary conditions valid at the extremities of the bar
(Z = +£Ly: 6v, =0 and 0T, = 0) are satisfied when k = p(n/Ly). The two other boundary conditions
(0T,, = 0 and 07, = 0) valid at the outer radius (R = Ry), are written in terms of the stream function:

. 1 (@ .
D, + p <RR — ¢,RR> - 3d£¢zz =0 (74a)

W N

ﬂﬂo|oo

3me cbZZR /¢ZZ ¢R CbRR CbRRR 3 Vo ? Vo c.DR ‘in
- [ L > — _ (p 2— ot
< 2 R TR 2R 2R 2R L) PPz tP\ 20 R tRe

(74b)

Owing to viscosity, only an elliptic regim exists. The rate of growth 5 is obtained by combining (29), (73)
and (74) (see Section 2).

This problem has already been investigated by Jeanclaude and Fressengeas (1997), using the method
developed by Fressengeas and Molinari (1994) for the dynamic stretching of sheets. The present approach is
more straightforward. A comparison between Jeanclaude and Fressengeas (1997) and the present approach
is proposed on Fig. 4. The material is representative of an OHFC copper; the behavior is defined by Eq.
(58) with the same properties as in the preceding section. The size of the cylindrical bar is given by Ly = 0.03
m and Ry/Ly = 0.01. The velocity at the tip is 75 = 300 m/s. The effect of the strain rate sensitivity is in-
vestigated (see Fig. 4). Three different values of m are tested: m = 0.05, m = 0.1 and m = 0.2. As m becomes
larger, the range where inertia has a significant influence decreases. Note that results in Fig. 4 are identical
to those presented by Jeanclaude and Fressengeas (1997) in Fig. 2.
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Fig. 4. Necking of a cylindrical bar. Effect of the strain rate sensitivity m on the initial relative growth rate G. The results are identical to
Jeanclaude and Fressengeas (1997). The same material (viscoplastic without strain hardening) as in Fig. 3 is adopted. The configuration
is Ly = 0.03 m, Ry = 0.01L, and V5 = 300 m/s.

5. Results and discussions

We focus on the dynamic extension of a cylindrical bar (analysis developed in Section 2). The material is
rate insensitive and strain hardening, representative of an OHFC copper. The hardening law is described by
the relationship (4). The reference material properties are : 6y = 490 MPa, n = 0.4 and p = 8900 kg/m?3. The
reference configuration is: Ly = 0.05 m, Ry/Ly = 0.02 and ¥, = 33 m/s. The cylindrical bar is initially
prestrained by a given amount € = n. The velocity ¥, is applied at the extremities Z = +L,. The homo-
geneous effective strain at time ¢ is:

& =n+In (1+V0t) (75)
Ly

The following calculations are carried out at the time ¢ = 23 ps. A parametric study is performed in order
to figure out the effects of inertia and of material properties on the necking rate N in the case of axisym-
metric loadings.

In the Fig. 2, the comparison between the 2-D dynamic and the dynamic long wavelength 1-D analyses
shows that inertia damps the long wavelength modes. The effect of the mass density on the necking rate N is
visualized in Fig. 5. As p becomes larger, inertia effects increase. As a consequence, for a given longitudinal
wavenumber £, the necking rate N decreases. Inertia acts as a stabilizing factor. Note that the Lagrangian
wavelength of maximum growth is not depending on the mass density. The necking rate of short wave-
lengths (here &£ > 550) is still zero, whatever the mass density. The results of the Fig. 5 show that inertia is
not responsible for the damping of short wavelengths. From Egs. (27), (31) and (32), the parameters p and
gy can be merged into a ratio p/ay. Therefore the trends observed for g, are the reverse of those previously
observed for p. An increase of oy leads to a higher necking rate (see Fig. 6), because the relative contri-
bution of inertia is lowered by a larger ay.

To explain the damping of short wavelength perturbations, the radius of the cylindrical bar R is varied,
keeping constant all other parameters. The thinner the bar is, the higher is the necking rate and the shorter
is the Lagrangian wavelength of maximum growth (see Fig. 7). The radius has a strong effect on the necking
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Fig. 5. Necking of a cylindrical bar. Influence of the mass density p on the necking rate N. The material is representative of a rate

insensitive with strain hardening OFHC copper. The reference properties are gy = 490 MPa, n = 0.4 and p = 8900 kg/m®. The con-
figuration is Ly = 0.05 m, Ry = 0.02L,, V5 = 33 m/s and ¢ = 23 ps.
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Fig. 6. Necking of a cylindrical bar. Influence of the stress level o, on the necking rate N. The same reference for the material (rate
insensitive with strain hardening) and the configuration as in Fig. 5 is considered.

rate of short wavelengths: for large values of Ry short wavelength modes can not grow in the bar. Moreover,
the radius does not have any influence on the necking rate of long wavelengths, since all curves present the
same tangent at the origin.

The effect of the strain hardening is next investigated in Fig. 8. The strain hardening is a stabilizing factor
since the necking rate N decreases as n becomes larger. Moreover, the Lagrangian wavelength of maximum
growth is shifted to the domain of shorter wavelengths. As a consequence, the loss or extinction of short
wavelength perturbations is mainly due to the multidimensional effects occuring in the necking zone which
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Fig. 7. Necking of a cylindrical bar. Influence of the radius R, on the necking rate N. The material is representative of a rate insensitive
with strain hardening OFHC copper (see Fig. 5). The configuration is Ly = 0.05 m, /) = 33 m/s and ¢ = 23 ps
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Fig. 8. Necking of a cylindrical bar. Effect of the strain hardening exponent » on the necking rate N. The same reference (rate in-
sensitive material with strain hardening and configuration) as in Fig. 5 is adopted.

are interplaying with the stabilizing effects of strain hardening. To the authors’ point of view, this refutes the
claim of Shenoy and Freund (1999) that inertia is responsible of both damping of long and short wave-
lengths. Note that for a viscoplastic materials, Fressengeas and Molinari (1994) have concluded that inertia
stabilizes the long wavelengths, while short wavelengths are damped by multiaxial effects.

Finally, the time evolution of the necking rate N is clearly depicted in Fig. 9. The Lagrangian wavelength
of maximum growth evolves with time and is shifted to shorter wavelength. Therefore, a new mode
of perturbation is dominant at each step of the deformation process. Calculations are performed for a
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Fig. 9. Necking of a cylindrical bar. Time dependence of the necking rate N. Same rate insensitive material and same configuration are
adopted as in Fig. 5.

homogeneous effective strain higher than n (z = 0 in Eq. (75)). The Considere criterion (1885) predicts the
onset of instability for the effective strain being equal to n. Our calculations show that, due to inertia, 2-D
effects and strain hardening, the growth rate of perturbations is rather weak just after the Considére cri-
terion is reached, but gradually increases with time.

6. Conclusion

A Lagrangian analysis is proposed to characterize bifurcation or instability in dynamic loadings. The
proposed method is an extension of the work of Hill and Hutchinson (1975) to the dynamic case. Im-
provements are given to the work of Shenoy and Freund (1999).

The necking bifurcation of a uniform cylindrical bar made of a rate insensitive hardening material is
investigated through a linear perturbation analysis. It has been shown that inertia and strain hardening act
as stabilizing factors. More precisely, inertia slows down the growth of long wavelength perturbations while
multidimensional effects conjugated with strain hardening extinct short wavelength perturbations. The
combination of these effects lead to the occurrence of a dominant mode. This dominant perturbation is time
dependent so as at each moment, a different mode has the fastest growing rate.

The proposed method has also been applied to predict the development of instability in configuration
such as rectangular sheet or cylindrical bar when the material is rate sensitive. Results obtained by Fres-
sengeas and Molinari (1994), Jeanclaude and Fressengeas (1997) are accurately retrieved in a straightfor-
ward way.
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Appendix A. Analysis of the growth rate of perturbation for rate insensitive materials under axisymmetric
loadings

A.1. The growth rate is a real number
Consider first the general case where the growth rate n is a complex number. Then the fourth order
algebraic equation (27) can be written in the following form:
I*+ (b, +ib) > + ¢, +ic; = 0 (A1)

where b; and ¢, are proportional to the imaginary part of 7. In this case, four complex solutions can be
found: [y, —/;, [, and —I,. Note that when 5 is real, /; = [,.
Due to the axisymmetic conditions (24), @ is searched in the form:

b =R sin(kZ){Ale”’Il (llR) + Azllem(lzR)} (AZ)

where 4, and 4, are complex amplitude scalar.
The following notations are adopted:

C1 = Ale”’ C2 = Aze"’ (A3)
and the Taylor expansion of the Bessel function /; is introduced:

I(R) = k: k(!];/(]z{)Jrz) (A4)

Moreover, the stream function @ has to be real for any 0 <R <Ry, thus the condition ® = & implies, for
any R:

i Ci(LR/2)" — C(LR/2)"™ + Co(1,R/2) — Co(1LR/2)

=0 (A.5)
p K (k+2)
which leads to, for any &:
) -, (71)1+2k n C2(12)1+2k _G()* =0 (A.6)

where (-) designates the conjugate of the complex number (-). The only possible solution is

L =1 (A7)
which means that the fourth order algebraic equation (A.1) must have real coefficients. Therefore # is a real
number.

A.2. Growth rates

It is shown in this section that the growth rate can only have two values. The growth rate # and the radial
wavenumber / are solutions of the system formed by Eq. (27) and one of the following relationships (33),
(35), (37) and (39). It is easily proved that these two relationships define even functions of / and quadratic
functions of 5. Therefore, the system can be written in the following form:

4B+ C(D)=0 5 +By(I)n+Cy(1) =0 (A.8)

By, B, C; and C, are even functions of the parameter /. By combination, # can be viewed as an even
function of /:
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n = Bs(I) (A.9)

As a conclusion, for each wavenumber £, the four complex radial wavenumbers /, solution of Eq. (27), can
be merged into pairs of opposite complex numbers. Therefore, owing to Eq. (A.9), only two real growth
rates are possible for the perturbation associated to the wavenumber k.

Appendix B. Initial conditions for the acceleration

For each longitudinal wavenumber &, two growth rates are found which provide two possible forms for
the perturbation noted @V and ®@. Since a linear stability analysis is performed, any linear combination
of the two modes satisfied the homogeneous boundary conditions and axisymmetry. For each k, the per-
turbation has the following form:

@ = [A,e"f(R) + A" f5(R)] sin kZ (B.1)

where 4, and A4, are real constants.
It must be checked that at the time #;, the perturbed acceleration derived from the stream function @ is
equal to zero. By time derivation of the relationship (19), the acceleration components are given by:
1Vy pp®y; e .

y —__- 0 B.2
Vr 2L()6 R + R ¢,Z ( a‘)

e i (B.2b)

It is easily seen that the two components of the acceleration vector are not equal to zero for any k.
Nevertheless, for large values of %, it is clear that from Eq. (27) the 4 solutions / are almost not depending
on 1. As a consequence, the two functions f(R) and f,(R) are identical. Thus by substitution of (B.1) into
(B.2), it follows:

V= kl:Al <\/§7’11 ! Ee’”) +4, (\/2172 1 Ee’yz)} cos(kZ)f1(R) (B.3a)
2 Lo 2 LO
yz_—{Al<E+m> +A2(E+@)} sin(kZ)f1 r(R) (B.3Db)
Lo € LO €

The two solutions 7, and 5, are the roots of the quadratic equation obtained from (27):

e P Wil po a\ I* 7272 | 14 a\ s
ol == I —p—(2—=+k In+|(p—=)5+@p=-3WKF+i*(u+= | =0 (B.4)
€ Lo € 2 )¢ 2

From the boundary condition (23a) and from (25), the modulus of % is of the same order as the modulus
of /. Thus from (B.4), the sum 5, + 1, is scaled by V;/L, and the product 1,7, by the ratio c.k*/p. As seen in
Fig. 2, the maximum growth rate is positive and large compared to ¥,/L,. Then, the other possible growth
rate (which is real) has to be negative, and of the same order of magnitude; then the other solution is also
large compared to ¥5/Lo. As a consequence, the relationships (B.3) can be simplified into:

7, = kvVé (Ain, + Aan,) cos(kZ)fi (R) (B.5a)

v = — L (g, + Ayy) sin(hZ)fi(R) (B.5b)

6/
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and the initial condition y = 0 is fulfilled when
Ainy + 4o, =0 (B.6)

In our analysis, when the amplitude factors 4; and A4, are linked by Eq. (B.6), an initial velocity per-
turbation (of the form (B.1)) can be added to the background solution with no initial acceleration. It has
been checked from the numerical simulations, that this condition is valid for longitudinal modes in the
range where the growth rate is maximum, which is the case of interest in our analysis.
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